
xPC Target™

User’s Guide

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

xPC Target™ User’s Guide

© COPYRIGHT 1999–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 1999 First printing New for Version 1 (Release 11.1)
November 2000 Online only Revised for Version 1.1 (Release 12)
June 2001 Online only Revised for Version 1.2 (Release 12.1)
September 2001 Online only Revised for Version 1.3 (Release 12.1+)
July 2002 Online only Revised for Version 2 (Release 13)
June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)
October 2004 Online only Revised for Version 2.6.1 (Release 14SP1)
November 2004 Online only Revised for Version 2.7 (Release 14SP1+)
March 2005 Online only Revised for Version 2.7.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.8 (Release 14SP3)
March 2006 Online only Revised for Version 2.9 (Release 2006a)
May 2006 Online only Revised for Version 3.0 (Release 2006a+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 4.0 (Release 2008b)
March 2009 Online only Revised for Version 4.1 (Release 2009a)
September 2009 Online only Revised for Version 4.2 (Release 2009b)
March 2010 Online only Revised for Version 4.3 (Release 2010a)
September 2010 Online only Revised for Version 4.4 (Release 2010b)
April 2011 Online only Revised for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)

Contents

Model Architectures

FPGA Models

1
FPGA Support . 1-2
Supported FPGA I/O Boards . 1-2
Prerequisites . 1-3

Workflow . 1-4
Creating an FPGA Domain Model . 1-6
Generating HDL with the Workflow Advisor 1-8
Creating an xPC Target Domain Model 1-15
Adding the xPC Target Interface Subsystem to the xPC
Target Domain Model . 1-17

Building and Downloading the Target Application 1-20
Interrupts . 1-20

FPGA-Based Applications . 1-23

Vector CANape Support

2
Vector CANape . 2-2
Vector CANape Basics . 2-2
xPC Target and Vector CANape Limitations 2-3

Configuring the Model for Vector CANape 2-4
Setting Up and Building the Model 2-4
Creating a New Vector CANape Project 2-5
Configuring the Vector CANape Device 2-6
Providing A2L (ASAP2) Files for Vector CANape 2-9

v

Event Mode Data Acquisition . 2-11
Guidelines . 2-11
Limitations . 2-11

Incorporating Fortran S-Functions

3
Fortran S-Functions . 3-2
Prerequisites . 3-2
Simulink Demos Folder . 3-2
Steps to Incorporate Fortran . 3-3

Fortran Atmosphere Model . 3-4
Creating a Fortran Atmosphere Model 3-4
Compiling Fortran Files . 3-7
Creating a C-MEX Wrapper S-Function 3-8
Compiling and Linking the Wrapper S-Function 3-12
Validating the Fortran Code and Wrapper S-Function . . . 3-13
Preparing the Model for the xPC Target Application
Build . 3-14

Building and Running the xPC Target Application 3-16

Target Application Environment

4
xPC Target Options Configuration Parameter 4-4

xPC Target Explorer . 4-5
Basic Operations . 4-5
Default Target Computers . 4-6
Saving Environment Properties . 4-7

Command Line Setup for Single Target Computer
Systems . 4-9

vi Contents

Command Line C Compiler Configuration 4-10

Command Line Network Communication Setup 4-12

Command Line PCI Bus Ethernet Setup 4-13

PCI Bus Ethernet Hardware . 4-14

Command Line PCI Bus Ethernet Settings 4-16

Command Line USB-to-Ethernet Setup 4-19

USB-to-Ethernet Hardware . 4-20

Command Line USB-to-Ethernet Settings 4-22

Command Line ISA Bus Ethernet Setup 4-24

ISA Bus Ethernet Hardware . 4-25

Command Line ISA Bus Ethernet Settings 4-27

Ethernet Card Selection by EthernetIndex 4-30

Command Line Serial Communication Setup 4-32

RS-232 Hardware . 4-33

Command Line RS-232 Settings . 4-34

Command Line Target Boot Methods 4-36

Command Line CD Boot Method . 4-37

Command Line DOS Loader Boot Method 4-39

vii

Command Line Removable Disk Boot Method 4-41

Command Line Setup for Multiple Target Computer
Systems . 4-43

Command Line Network Communication Setup:
Multiple Target Computers . 4-44

Command Line PCI Bus Ethernet Setup: Multiple
Target Computers . 4-45

PCI Bus Ethernet Hardware . 4-46

Command Line PCI Bus Ethernet Settings: Multiple
Target Computers . 4-48

Command Line USB-to-Ethernet Setup: Multiple Target
Computers . 4-51

USB-to-Ethernet Hardware . 4-52

Command Line USB-to-Ethernet Settings: Multiple
Target Computers . 4-54

Command Line ISA Bus Ethernet Setup: Multiple
Target Computers . 4-57

ISA Bus Ethernet Hardware . 4-58

Command Line ISA Bus Ethernet Settings: Multiple
Target Computers . 4-60

Ethernet Card Selection by EthernetIndex: Multiple
Target Computers . 4-63

Command Line Serial Communication Setup: Multiple
Target Computers . 4-66

viii Contents

RS-232 Hardware . 4-67

Command Line RS-232 Settings: Multiple Target
Computers . 4-68

Command Line Target Boot Methods: Multiple Target
Computers . 4-70

Command Line Network Boot Method: Multiple Target
Computers . 4-71

Command Line CD Boot Method: Multiple Target
Computers . 4-73

Command Line DOS Loader Boot Method: Multiple
Target Computers . 4-75

Command Line Removable Disk Boot Method: Multiple
Target Computers . 4-77

Signals and Parameters

5
Signal Monitoring Basics . 5-4

Monitor Signals with xPC Target Explorer 5-5

Monitor Signals with MATLAB Language 5-9

Configure for Monitoring Stateflow States 5-11

Monitor Stateflow States with xPC Target Explorer . . 5-14

Monitor Stateflow States with MATLAB Language 5-17

ix

Animate Stateflow Charts with Simulink External
Mode . 5-18

Signal Tracing Basics . 5-20

Trace Signals with Target Scope (xPC) Blocks 5-21

xPC Target Scope Usage . 5-27

Target Scope Usage . 5-28

Trace Signals with Host Scope (xPC) Blocks 5-29

Host Scope Usage . 5-32

Trace Signals with Target Scopes Using xPC Target
Explorer . 5-33

Configure Scope Sampling Using xPC Target
Explorer . 5-40

Configure Interactive Scope Triggering Using xPC
Target Explorer . 5-44

Configure Noninteractive Scope Triggering Using xPC
Target Explorer . 5-48

Configure Target Scope Display Using xPC Target
Explorer . 5-54

Create Signal Groups Using xPC Target Explorer 5-58

Trace Signals with Host Scopes Using xPC Target
Explorer . 5-62

Configure the Host Scope Viewer 5-68

x Contents

Configure Data Cursor Using xPC Target Explorer . . . 5-70

Trace Signals with Target Scopes Using MATLAB
Language . 5-71

Trace Signals with Simulink External Mode 5-75

External Mode Usage . 5-79

Trace Signals with a Web Browser 5-80

Signal Logging Basics . 5-82

Log Signals with File Scope (xPC) Blocks 5-83

File Scope Usage . 5-88

Log Signals with File Scopes Using xPC Target
Explorer . 5-89

Configure File Scopes Using xPC Target Explorer 5-94

Log Signal Data into Multiple Files 5-99

Log Signals Using Outport with xPC Target
Explorer . 5-103

Log Signals Using Outport with MATLAB Language . . 5-107

Log Signals with File Scopes Using MATLAB
Language . 5-112

Log Signals with a Web Browser . 5-117

Parameter Tuning Basics . 5-118

xi

Tune Parameters with xPC Target Explorer 5-119

Create Parameter Groups Using xPC Target
Explorer . 5-124

Tune Parameters Using MATLAB Language 5-128
Reset Target Application Parameters to Previous
Values . 5-130

Tune Parameters with Simulink External Mode 5-132

Tune Parameters with a Web Browser 5-134

Save and Reload Parameters with MATLAB
Language . 5-135
Save the Current Set of Target Application Parameters . . 5-135
Load Saved Parameters to a Target Application 5-136
List the Values of the Parameters Stored in a File 5-137

Configure to Tune Inlined Parameters 5-138

Tune Inlined Parameters with xPC Target Explorer . . 5-141

Tune Inlined Parameters with MATLAB Language . . . 5-146

Nonobservable Signals and Parameters 5-148

Execution Modes

6
Execution Modes . 6-2

Interrupt Mode . 6-3
Latencies Introduced by Interrupt Mode 6-3

xii Contents

Polling Mode . 6-5
Introducing Polling Mode . 6-5
Setting the Polling Mode . 6-7
Restrictions Introduced by Polling Mode 6-10
Controlling the Target Application 6-13
Polling Mode Performance . 6-14
Polling Mode and Multicore Processors 6-14

Execution Using MATLAB® Scripts

Targets and Scopes in the MATLAB Interface

7
Target Driver Objects . 7-2
What Is a Target Object? . 7-2
Accessing Help for Target Objects . 7-3
Creating Target Objects . 7-3
Displaying Target Object Properties 7-4
Setting Target Object Properties from the Host
Computer . 7-5

Getting the Value of a Target Object Property 7-6
Using the Method Syntax with Target Objects 7-7

Target Scope Objects . 7-8
What Is a Scope Object? . 7-8
Accessing Help for Scope Objects . 7-10
Displaying Scope Object Properties for a Single Scope 7-10
Displaying Scope Object Properties for All Scopes 7-11
Setting the Value of a Scope Property 7-11
Getting the Value of a Scope Property 7-12
Using the Method Syntax with Scope Objects 7-13
Acquiring Signal Data with File Scopes 7-14
Acquiring Signal Data into Dynamically Named Files with
File Scopes . 7-15

Advanced Data Acquisition Topics . 7-17

xiii

Logging Signal Data with FTP and File System
Objects

8
File Systems . 8-2

FTP and File System Objects . 8-4

Using xpctarget.ftp Objects . 8-5
Overview . 8-5
Accessing Files on a Specific Target Computer 8-6
Listing the Contents of the Target Computer Folder 8-7
Retrieving a File from the Target Computer to the Host
Computer . 8-8

Copying a File from the Host Computer to the Target
Computer . 8-8

Using xpctarget.fs Objects . 8-10
Overview . 8-10
Accessing File Systems from a Specific Target Computer . . 8-11
Retrieving the Contents of a File from the Target Computer
to the Host Computer . 8-12

Removing a File from the Target Computer 8-15
Getting a List of Open Files on the Target Computer 8-16
Getting Information about a File on the Target
Computer . 8-17

Getting Information about a Disk on the Target
Computer . 8-18

Execution Using Graphical User Interface
Models

9
xPC Target Interface Blocks to Simulink Models 9-2
Simulink User Interface Model . 9-2
Creating a Custom Graphical Interface 9-3
To xPC Target Block . 9-4
From xPC Target Block . 9-5

xiv Contents

Creating a Target Application Model 9-5
Marking Block Parameters . 9-6
Marking Block Signals . 9-8

Execution Using the Target Computer
Command Line

10
Target Computer Command-Line Interface 10-2
Using Target Application Methods on the Target
Computer . 10-2

Manipulating Target Object Properties from the Target
Computer . 10-3

Manipulating Scope Objects from the Target Computer . . 10-4
Manipulating Scope Object Properties from the Target
Computer . 10-6

Aliasing with Variable Commands on the Target
Computer . 10-6

Execution Using the Web Browser Interface

11
Web Browser Interface . 11-2
Introduction . 11-2
Connecting the Web Interface Through TCP/IP 11-2
Connecting the Web Interface Through RS-232 11-3
Using the Main Pane . 11-6
Changing WWW Properties . 11-9
Viewing Signals with a Web Browser 11-9
Viewing Parameters with a Web Browser 11-10
Changing Access Levels to the Web Browser 11-11

xv

Troubleshooting

Basic Troubleshooting

12
Troubleshooting Procedure . 12-2

Confidence Test Failures

13
Test 1: Ping Using System Ping . 13-2

Test 2: Ping Using xpctargetping . 13-5

Test 3: Reboot Target Computer . 13-7

Test 4: Build and Download xpcosc 13-9

Test 5: Check Host-Target Communications 13-12

Test 6: Download Prebuilt Target Application 13-14

Test 7: Execute Target Application 13-15

Test 8: Upload Data and Compare 13-16

Host Computer Configuration

14
Why Does Boot Drive Creation Halt? 14-2

xvi Contents

Target Computer Configuration

15
Faulty BIOS Settings on Target Computer 15-2

Allowable Partitions on the Target Hard Drive 15-3

File System Disabled on the Target Computer 15-4

Adjust the Target Computer Stack Size 15-5

How Can I Get PCI Board Information? 15-6

How Do I Diagnose My Board Driver? 15-7

Host-Target Communication

16
Is There Communication Between the Computers? . . . 16-2

Boards with Slow Initialization . 16-4

Timeout with Multiple Ethernet Cards 16-6

Recovery from Board Driver Errors 16-8

How Can I Diagnose Network Problems? 16-9

xvii

Target Computer Boot Process

17
Why Won’t the Target Computer Boot? 17-2

Why Won’t the Kernel Load? . 17-4

Why Is the Target Medium Not Bootable? 17-5

Why Is the Target Computer Halted? 17-6

Modeling

18
How Do I Handle Encoder Register Rollover? 18-2

How Can I Write Custom Device Drivers? 18-3

Model Compilation

19
Requirements for Standalone Target Applications 19-2

Compiler Errors from Models Linked to DLLs 19-3

Compilation Failure with WATCOM Compilers 19-4

xviii Contents

Application Download

20
Why Does My Download Time Out? 20-2

Increase the Time for Downloads 20-4

Why Does the Download Halt? . 20-5

Application Execution

21
View Application Execution from the Host 21-2

Sample Time Deviates from Expected Value 21-3

What Measured Sample Time Can I Expect? 21-5

Why Has the Stop Time Changed? 21-6

Why Is the Web Interface Not Working? 21-7

Application Parameters

22
Why Does the getparamid Function Return
Nothing? . 22-2

Can I Tune All the Model Parameters? 22-3

xix

Application Signals

23
How Do I Fix Invalid File IDs? . 23-2

Can I Access All the Model Signals? 23-3

Application Performance

24
How Can I Improve Run-Time Performance? 24-2

Why Does Model Execution Produce CPU
Overloads? . 24-4

How Small Can the Sample Time Be? 24-6

Can I Allow CPU Overloads? . 24-7

Getting MathWorks Support

25
Where Is the MathWorks Support Web Site? 25-2

How Do I Get a Software Update? 25-3

What Should I Do After Updating Software? 25-4

How Do I Contact MathWorks Technical Support? 25-5

xx Contents

Tuning Performance

26
Building Referenced Models in Parallel 26-2

Multicore Processor Configuration 26-4

Profiling Target Application Execution 26-6
Profiling Overview . 26-6
Configuring Your Model to Collect Profile Data During
Execution . 26-6

Displaying and Evaluating Profile Data 26-7

Function Reference

27
Classes . 27-2

Target Computers . 27-3

Target Environments . 27-4

Target Applications . 27-5

Scopes . 27-6

Parameters . 27-7

Signals . 27-8

Data Logs . 27-9

File Systems . 27-10

xxi

Functions

28

Configuration Parameters

29
Setting Configuration Parameters 29-2
xPC Target options Pane . 29-3
Automatically download application after building 29-4
Download to default target PC . 29-5
Specify target PC name . 29-6
Name of xPC Target object created by build process 29-7
Use default communication timeout 29-8
Specify the communication timeout in seconds 29-9
Execution mode . 29-10
Real-time interrupt source . 29-11
I/O board generating the interrupt 29-12
PCI slot (-1: autosearch) or ISA base address 29-16
Log Task Execution Time . 29-17
Signal logging data buffer size in doubles 29-18
Enable profiling . 29-20
Number of events (each uses 20 bytes) 29-21
Double buffer parameter changes . 29-22
Load a parameter set from a file on the designated target
file system . 29-24

File name . 29-25
Build COM objects from tagged signals/parameters 29-26
Generate CANape extensions . 29-27
Include model hierarchy on the target application 29-28
Enable Stateflow animation . 29-29

Index

xxii Contents

Model Architectures

xPC Target™ models are Simulink® models that use special blocks
and architectures.

• Chapter 1, “FPGA Models”

• Chapter 2, “Vector CANape Support”

• Chapter 3, “Incorporating Fortran S-Functions”

1

FPGA Models

• “FPGA Support” on page 1-2

• “Workflow” on page 1-4

• “FPGA-Based Applications” on page 1-23

1 FPGA Models

FPGA Support

In this section...

“Supported FPGA I/O Boards” on page 1-2

“Prerequisites” on page 1-3

Supported FPGA I/O Boards
xPC Target and HDL Coder™ software enable you to implement Simulink
algorithms and configure I/O functionality on Speedgoat field programmable
gate array (FPGA) boards.

Board Description

Speedgoat IO301 Xilinx® Virtex-II, 6912 logic cells, 64 TTL
I/O lines

Speedgoat IO302 Xilinx Virtex-II, 6912 logic cells, 32 RS-422
I/O lines

Speedgoat IO303 Xilinx Virtex-II, 6912 logic cells, 16 TTL and
24 RS-422 I/O lines

Speedgoat IO311 Xilinx Virtex-II, 24192 logic cells, 64 TTL
I/O lines

Speedgoat IO312 Xilinx Virtex-II, 24192 logic cells, 32 RS-422
I/O lines

Speedgoat IO313 Xilinx Virtex-II, 24192 logic cells, 16 TTL
and 24 RS-422 I/O lines

Speedgoat IO314 Xilinx Virtex-II, 24192 logic cells, 32 LVDS
I/O lines

Speedgoat IO325 Xilinx Virtex-4 chip, 41472 logic cells, 64
LVCMOS or 32 LVDS (four are input only)
I/O lines, two 16-bit 105 MHz analog input
channels

1-2

FPGA Support

Speedgoat I/O FPGA boards are sold as part of xPC Target
Turnkey systems. For xPC Target Turnkey hardware, see
http://www.mathworks.com/products/xpctarget/supported-hardware/index.html.

Prerequisites
To work with FPGAs in the xPC Target environment, you must:

• Install HDL Coder and Xilinx ISE 10.1. For more information, see
“Installation”.

• Install the Speedgoat FPGA I/O board in the target computer.

• Be familiar with FPGA technology. In particular, you must know the clock
frequency and the I/O connector pin and channel configuration of your
FPGA board.

• Have experience using data type conversion and designing Simulink
fixed-point algorithms.

HDL programming experience is not required to generate HDL code for your
FPGA target.

1-3

http://www.mathworks.com/products/xpctarget/supported-hardware/index.html

1 FPGA Models

Workflow

In this section...

“Creating an FPGA Domain Model” on page 1-6

“Generating HDL with the Workflow Advisor” on page 1-8

“Creating an xPC Target Domain Model” on page 1-15

“Adding the xPC Target Interface Subsystem to the xPC Target Domain
Model” on page 1-17

“Building and Downloading the Target Application” on page 1-20

“Interrupts” on page 1-20

The general workflow for implementing Simulink algorithms on a Speedgoat
FPGA I/O board in a target computer.

1 Create an FPGA domain model. This Simulink model contains a subsystem
(algorithm) to be programmed onto the FPGA chip.

2 From this model, use the HDL Workflow Advisor in HDL Coder to:

a Specify the desired FPGA board.

b Specify the I/O interface.

c Synthesize the Simulink algorithm for FPGA programming.

d Generate an xPC Target interface subsystem.

This subsystem contains the blocks that program the FPGA and
communicate with the board during download and real-time execution
of the target application..

3 Create an xPC Target domain model.

This model runs as an xPC Target application on the target computer.
The model contains signals that transmit to and receive from the FPGA
algorithm through the xPC Target interface subsystem.

1-4

Workflow

4 Add the generated xPC Target interface subsystem to the xPC Target
domain model. Connect signals to the inports and outports of the interface
subsystem.

5 Build the xPC Target domain model and download the application to
the target computer. Upon download, the application loads onto the
target computer and the algorithm loads onto the FPGA chip. The FPGA
algorithm is contained in a bitstream.

The process looks like this:

�������	
�

����
�
�����
�

��������
����	
�

��������
�
���
����

�
�����
�

����
����

�����
�����
��������
���
��
�

������
!"#

��!

���	�������
��

��
��
�������
��

1-5

1 FPGA Models

For an example of this process, see the Servo Control with the Speedgoat
IO301 FPGA Board example.

This topic references the example.

Creating an FPGA Domain Model
A Simulink FPGA model lets you test your FPGA algorithm in a simulation
environment before you deploy the algorithm to an FPGA board.

1 Create a Simulink model to contain the algorithm that you want to load
onto the FPGA.

2 Place the algorithm to be programmed on the FPGA inside a Subsystem
block. The model can include other blocks and subsystems for testing.
However, one subsystem must contain the FPGA algorithm.

3 Set or confirm the subsystem inport and outport names and data types.

The HDL Workflow Advisor uses these settings for routing and mapping
algorithm signals to I/O connector channels.

4 Save the model.

This model is your FPGA domain model. It represents the simulation sample
rate of the clock on your FPGA board. For example, the Speedgoat IO301 has
an onboard 33MHz clock. One second of simulation equals 33e6 iterations
of the model.

See dxpcSGIO301servo_fpga for an example of an FPGA domain model. The
ServoSystem subsystem contains the FPGA algorithm.

1-6

Workflow

1-7

1 FPGA Models

Generating HDL with the Workflow Advisor
This topic assumes that you have created an FPGA subsystem (algorithm)
in an FPGA domain model. If you have not done so, see “Creating an FPGA
Domain Model” on page 1-6.

To generate an HDL code representation of a Simulink subsystem (your
FPGA algorithm), use the HDL Workflow Advisor in the HDL Coder to:

1 Specify the FPGA board.

2 Specify the I/O interface.

3 Synthesize the Simulink algorithm for FPGA programming.

4 Generate an xPC Target interface subsystem. This generated model
consists of one subsystem that contains blocks to program the FPGA and
communicate with the FPGA I/O board during download and real-time
execution of the target application. You add this generated subsystem
to your xPC Target domain model.

For more on HDL Workflow Advisor, see “HDL Workflow Advisor”.

Before you start HDL Workflow Advisor, develop a plan to map the FPGA
subsystem inports and outports. Inports and outports may transmit signal
data between the target computer and the FPGA over the PCI bus or map to
I/O channels for communicating with external devices. In addition to the
Port Name and Port Type (Inport or Outport), you need the following
information to specify the I/O interface:

• Data Type—Encodes such attributes as width and sign. Data types must
map consistently to their corresponding I/O pins. For instance, an inport of
type uint32 cannot be connected to an FPGA I/O interface of type TTL I/O
channel [0:7] because too few TTL bits are available.

• Target Platform Interfaces—Encodes the I/O channels on the FPGA as
well as their functional type. For a single-ended interface (TTL, LVCMOS),
one channel maps to one connector pin. For a differential interface (RS422,
LVDS), one channel maps to two connector pins. To discover the mapping
for a particular pin, see the pin connector map provided with the board
description. I/O channels may also map to a predefined specification or role
(PCI Interface, Interrupt from FPGA).

1-8

Workflow

• Bit Range/Address/FPGA Pin—Encodes the pins on the target platform
to which the inports and outports are assigned, along with the channel
number used by the port. For specification PCI Interface, encodes the
PCI address used by the port.

In addition, if you specify vector inports or outports to a subsystem, HDL
Workflow Advisor automatically inserts a strobe to eliminate race conditions
between the elements. You specify a vector port as follows:

• Inport— Add a mux outside the subsystem connected to a demux inside
the subsystem.

• Outport – Add a mux inside the subsystem connected to a demux outside
the subsystem.

• Inport and Outport – Configure the port dimension to be greater than 1.

Tip Before generating code involving vector inports or outports, select
the Scalarize vector ports check box in the Coding style tab of node
Global Settings, under node HDL Code Generation of the Configuration
Parameters dialog box.

For connector pin and I/O channel assignments of your supported FPGA I/O
board, see the board reference page for your board. For more on mapping
Speedgoat FPGA I/O pins in HDL Workflow Advisor, see “Set the Target
Interface for Speedgoat Boards”.

To start HDL Workflow Advisor, open your FPGA domain model. Try these
steps with the dxpcSGIO301servo_fpga example:

1 In the FPGA model (dxpcSGIO301servo_fpga), right-click the FPGA
subsystem (ServoSystem). From the context menu, select HDL
Code > HDL Workflow Advisor.

The HDL Workflow Advisor dialog window displays a number of tasks
for the subsystem. You need to address only a subset of the tasks.

2 Expand the Set Target folder and select task 1.1 Set Target Device
and Synthesis Tool.

1-9

1 FPGA Models

a Set Target Workflow to FPGA Turnkey.

b From the Target platform drop-down list, select the Speedgoat FPGA
I/O board installed in your target computer.

For the dxpcSGIO301servo_fpga example, this is Speedgoat IO301
FPGA IO board (Acromag PMC-DX501).

c Click the Run This Task button.

3 In the same folder, select task 1.2 Set Target Interface.

The Set Target Interface pane contains a table in which you specify
the target platform interfaces. For each inport and outport signal, select
the desired interface.

a For signals between the target computer and the FPGA — In the Target
Platform Interfaces column, select PCI Interface.

b For signals from the FPGA through I/O lines (channels) — In the Target
Platform Interfaces column, select the required I/O channel type (for
example, TTL I/O Channel [0:63]).

c In the Bit Range/Address/FPGA Pin column, enter the channel value
for each signal.

Tip For PCI Interface signals, use the automatically generated values.
Do not enter PCI address values.

d After specifying interfaces for all signals, click Run This Task.

HDL Workflow Advisor looks like this:

1-10

Workflow

4 In the same folder, select task 1.3 Set Target Frequency (optional).

The Set Target Frequency pane contains fields showing the FPGA
input clock frequency (fixed) and the FPGA system clock frequency, which
defaults to the FPGA input clock frequency.

a To specify a different system clock frequency, type the new value into
the field FPGA system clock frequency (MHz).

1-11

1 FPGA Models

Note If the specified value cannot be exactly generated, HDL Workflow
Advisor will generate the closest match based on the following formula:

F F ClkFxMultiply ClkFxDividesystem input * /

where ClkFxMultiply and ClkFxDivide are integers.

b Click Run This Task.

5 To complete the remaining tasks, expand the Download to Target folder,
and right-click task 5.2 Generate xPC Target Interface.

6 In this pane, click Run To Selected Task.

This action:

• Runs all remaining tasks.

• Creates the FPGA bitstream file in the hdlsrc folder. The xPC Target
interface subsystem references this bitstream file during the build and
download process.

• Generates a model named gm_fpgamodelname_xpc, which contains the
xPC Target interface subsystem.

After the process is finished, HDL Workflow Advisor looks like this:

1-12

Workflow

The generated interface subsystem looks like this:

1-13

1 FPGA Models

For information on how to integrate the interface subsystem into the xPC
Target domain model, see “Adding the xPC Target Interface Subsystem to the
xPC Target Domain Model” on page 1-17.

1-14

Workflow

Creating an xPC Target Domain Model
The xPC Target software enables you to execute Simulink and
Stateflow® models on a target computer for rapid control prototyping,
hardware-in-the-loop (HIL) simulation, and other real-time testing
applications. You can also include Speedgoat FPGA I/O boards in your design.
Either before or after you have created the FPGA domain model and the xPC
Target interface subsystem using HDL Workflow Advisor, create an xPC
Target domain model in which you plan to include the interface subsystem.

1 Create a Simulink model that contains the functionality you want to
simulate in conjunction with the FPGA algorithm. This model, referred to
as the xPC Target domain model, runs in real-time on the target computer.
The xPC Target model and the FPGA algorithm communicate over the
PCI bus.

2 Save the model.

See dxpcSGIO301servo_xpc for an example of an xPC Target domain model.
In this example, the disconnected signals later connect to the inports and
outports of the xPC Target interface subsystem when you add it. See “Adding
the xPC Target Interface Subsystem to the xPC Target Domain Model” on
page 1-17.

1-15

1 FPGA Models

1-16

Workflow

Adding the xPC Target Interface Subsystem to the
xPC Target Domain Model
This topic assumes that you have generated an xPC Target interface
subsystem with the HDL Coder software. If you have not yet done so, see
“Generating HDL with the Workflow Advisor” on page 1-8.

1 Open gm_fpgamodelname_xpc in the Simulink editor.

This generated model contains a subsystem with the same name as the
subsystem in the Simulink FPGA domain model. Although the appearance
is similar, this subsystem does not contain the Simulink algorithm.
Instead, the algorithm is implemented in an FPGA bitstream. You
reference and load this algorithm onto the FPGA from this subsystem.

2 Select, copy, and paste the this subsystem, xPC Target interface subsystem,
into the xPC Target domain model.

3 Save or discard gm_fpgamodelname_xpc. You can always recreate it using
the HDL Workflow Advisor.

4 In the xPC Target domain model, connect signals to the inports and
outports of the xPC Target interface subsystem.

The xPC Target interface subsystem is a masked subsystem with three
parameters:

• Device index

• PCI slot

• Sample time

5 Set the parameters according to the FPGA I/O boards in your target
computer.

a If you have a single FPGA I/O board, leave the device index and PCI
slot at the default values. You can set the sample time or leave it at –1
for inheritance.

b If you have multiple FPGA I/O boards, give each board a unique device
index.

1-17

1 FPGA Models

c If you have two or more boards of the same type (for example, two
IO301s), specify the PCI slot ([bus, slot]) for each board. Get this
information with the xpctarget.xpc.getxpcpci function.

6 Save the model.

See dxpcSGIO301servo_xpc_wiss for an example of an xPC Target domain
model that has the interface subsystem pasted and connected.

1-18

Workflow

You are now ready to build and download the xPC Target domain model. See
“Building and Downloading the Target Application” on page 1-20.

1-19

1 FPGA Models

Building and Downloading the Target Application
This topic assumes that you have created an xPC Target domain model
that includes an xPC Target interface subsystem generated from the HDL
Workflow Advisor. If you have not yet done so, see “Adding the xPC Target
Interface Subsystem to the xPC Target Domain Model” on page 1-17.

1 Configure the target computer and connect it to the host computer.

2 Build and download the xPC Target model. The xPC Target model loads
onto the target computer and the FPGA algorithm bitstream loads onto
the FPGA.

3 If you are using I/O lines (channels), confirm that you have connected the
lines to your external hardware under test.

The start and stop of the xPC Target model controls the start and stop of
the FPGA algorithm. The FPGA algorithm executes at the clock frequency
of the FPGA I/O board, while the application executes in accordance with
the model sample time.

Interrupts
xPC Target software schedules the target application using either the internal
timer of the target computer (default) or an interrupt from an I/O board.
You can use your Speedgoat FPGA board to generate an interrupt, which
allows you to:

• Schedule execution of the target application based on this interrupt
(synchronous execution). This method assumes you generate the interrupt
periodically.

• Execute a designated subsystem in your target application (asynchronous
execution).

To use FPGA-based interrupts, set up and configure the FPGA domain and
xPC Target domain models.

FPGA Domain Model
In the FPGA domain subsystem, create the interrupt source execution of the
target application in one of the following ways:

1-20

Workflow

Source Description

Internal A clock you create using Simulink blocks to create input
signals. This clock is a binary pulse train of zeros and ones
(transition from 0 to 1 and vice versa). The clock generates an
interrupt on a rising edge. The following is an example of an
internally generated interrupt source from Simulink blocks.
Connect the internally generated interrupt source to an outport
labelled INT.

External A clock signal that comes from a device outside the target
computer. You use a digital input pin to connect to this
signal. The following is an example of an externally generated
interrupt source that comes from TTL channel 8. Delay this
source by one FPGA clock cycle and connect to an outport
labeled INT.

In both cases, wire the interrupt source to an outport in the FPGA subsystem
and assign the outport as Interrupt from FPGA in the HDL Workflow
Advisor task 1.2 Set Target Interface.

You are now ready to set up interrupt support in the xPC Target domain
model. See “xPC Target Domain Model” on page 1-21.

xPC Target Domain Model
If you have not yet done so, see “FPGA Domain Model” on page 1-20.

Configure the model xPC Target domain model to set up interrupt support:

1 Open the xPC Target domain model.

1-21

1 FPGA Models

2 In the Simulink editor, select Simulation > Model Configuration
Parameters.

3 Navigate to node xPC Target options, under node Code Generation.

4 From the Real-time interrupt source list, select one of the following:

• Auto (PCI only).

• The IRQ assigned to your FPGA board.

5 From the I/O board generating the interrupt parameter, select your
FPGA board, for example, Speedgoat_IO301.

6 Add the xPC Target interface subsystem to the model (see “Adding the
xPC Target Interface Subsystem to the xPC Target Domain Model” on
page 1-17).

7 Build and download the application to the target computer.

8 When you start the target application, simulation updates occur when the
application receives an interrupt from the FPGA I/O board.

1-22

FPGA-Based Applications

FPGA-Based Applications
The xPC Target product provides FPGA applications as examples of using the
integrated HDL Coder and xPC Target workflow:

Example Description

Servo Control with the
Speedgoat IO301 FPGA
Board

Shows programming and configuring the
Speedgoat IO301 with a simple PWM servo
controller, hardware counter, and digital I/O.

Digital I/O with the
Speedgoat IO303 FPGA
Board

Shows programming and configuring the
Speedgoat IO303 for digital I/O.

1-23

1 FPGA Models

1-24

2

Vector CANape Support

This topic describes how to use xPC Target to interface the target
computer to the Vector CAN Application Environment (CANape)
(http://www.vector-worldwide.com) using the Universal Calibration
Protocol (XCP). This documentation includes the following topics:

• “Vector CANape” on page 2-2

• “Configuring the Model for Vector CANape” on page 2-4

• “Event Mode Data Acquisition” on page 2-11

http://www.vector-worldwide.com

2 Vector CANape® Support

Vector CANape

In this section...

“Vector CANape Basics” on page 2-2

“xPC Target and Vector CANape Limitations” on page 2-3

Vector CANape Basics
You can use a target computer as an electronic control unit (ECU) for a Vector
CANape® system. Using a target computer in this way, a Vector CANape
system can read signals and parameters from a target application running on
the target computer.

The xPC Target software supports polling and event driven modes for
data acquisition. Polling mode data acquisition is straightforward. Event
mode data acquisition requires additional settings (see “Event Mode Data
Acquisition” on page 2-11).

Note This documentation describes how to configure xPC Target and Vector
CANape software to work together. It also assumes that you are familiar with
the Vector CANape product family. See http://www.vector-cantech.com
for further information about the Vector CANape products.

The xPC Target software works with Vector CANape version 5.6 and higher.
To enable a target computer to work with Vector CANape software, you
need to:

• Configure Vector CANape to communicate with the xPC Target software
as an ECU.

• Enable the xPC Target software to generate a target application that can
provide data compliant with Vector CANape.

• Provide a standard TCP/IP physical layer between the host computer and
target computer. The xPC Target software supports Vector CANape only
through TCP/IP.

2-2

http://www.vector-cantech.com

Vector CANape®

To support the XCP communication layer, the xPC Target software provides:

• An XCP server process in the target application that runs on-demand in
the background.

• A generator that produces A2L (ASAP2) files that Vector CANape can load
into the Vector CANape software database. The generated file contains
signal and parameter access information for the target application.

xPC Target and Vector CANape Limitations
The xPC Target software supports the ability to acquire signal data at the
base sample rate of the model. The xPC Target software does not support the
following for Vector CANape:

• Vector CANape start and stop ECU (target computer) commands

Tip To start and stop the application on the target computer, use the xPC
Target start and stop commands, for example tg.start, tg.stop.

• Vector CANape calibration commands or flash RAM calibration commands

• Multiple simultaneous Vector CANape connections to a single target
computer

2-3

2 Vector CANape® Support

Configuring the Model for Vector CANape

In this section...

“Setting Up and Building the Model” on page 2-4

“Creating a New Vector CANape Project” on page 2-5

“Configuring the Vector CANape Device” on page 2-6

“Providing A2L (ASAP2) Files for Vector CANape” on page 2-9

Setting Up and Building the Model
Set up your model to work with Vector CANape. The following procedure uses
the xpcosc model. It assumes that you have already configured your model
to generate xPC Target code. If you have not done so, see “Set Configuration
Parameters” and “xPC Target Options Configuration Parameter” on page 4-4.
It also assumes that you have already created a Vector CANape project. If you
have not done so, see “Creating a New Vector CANape Project” on page 2-5.

1 In the MATLAB® Command Window, type

xpcosc

2 Open the xPC Target library. For example, in the MATLAB window, type

xpclib

3 Navigate to the Misc sublibrary and double-click that library.

4 Drag the XCP Server block to the xpcosc model.

This block enables an XCP server process to run in the target application.

5 In the model, double-click the XCP Server block. Check the following
parameters:

• Target Address— Target IP address for target computer. The default
value is getxpcenv(`TcpIpTargetAddress'). Typically, you will want
to leave the default entry. Otherwise, enter the TCP/IP address for the
target computer.

2-4

Configuring the Model for Vector CANape®

• Server Port— Port for communication between target computer and
XCP server. The default value is 5555. This value must be the same as
the port number you specify for the Vector MATLAB device.

6 If you want to use the event mode to acquire signal data, set the priority
of the xcpserver block to be the lowest priority. For example, enter a
priority of 10000000. For Simulink blocks, the higher the priority number,
the lower the priority.

7 In the model Simulink window, click Simulation > Model Configuration
Parameters.

The Configuration Parameters dialog box is displayed for the model.

8 In the left pane, click the xPC Target options node.

The associated pane is displayed.

9 In the Miscellaneous options area, select the Generate CANape
extensions check box.

This option enables target applications to generate data, such as that for
A2L (ASAP2), for Vector CANape.

10 Build the model.

The xPC Target software builds the target application, including an A2L
(ASAP2) data file for the target application.

11 On the target computer monitor, look for the following message. These
messages indicate that you have built the target application without
producing an error and can now connect to the target with Vector CANape.

XCP Server set up, waiting for connection

You can now create a new Vector CANape project (see “Creating a New Vector
CANape Project” on page 2-5.

Creating a New Vector CANape Project
This procedure describes how to create a new Vector CANape project that
can communicate with an xPC Target application. It assumes that you have

2-5

2 Vector CANape® Support

set up, built, and downloaded your model (see “Setting Up and Building the
Model” on page 2-4).

1 In a DOS window, create a new directory to hold your project. This can be
the same directory as your xPC Target model files. For example, type

mkdir C:\MyProject

2 Start Vector CANape.

3 Select File > New project.

A new project wizard is displayed. Follow this dialog to create a new project.

4 After you create the new project, start it.

After the preliminary warning, the CANape window is displayed.

You can now configure the target computer and the loaded target application
as a Vector CANape device (see “Configuring the Model for Vector CANape”
on page 2-4).

Configuring the Vector CANape Device
This procedure describes how to configure the Vector CANape Device to work
with your target application. It assumes the following:

• You have created a new Vector CANape project to associate with a
particular target application. If you have not yet done so, see “Creating a
New Vector CANape Project” on page 2-5.

• You have set up, built, and downloaded your model. If you have not yet
done so, see “Setting Up and Building the Model” on page 2-4.

1 If you have not yet started your new Vector CANape project, start it now.

The Vector CANape window is displayed.

2 In the CANape window, click Device > Device configuration.

The device configuration window is displayed.

2-6

Configuring the Model for Vector CANape®

3 In the device configuration window, click New.

4 In Device Name, enter a name for the device to describe your target
application. For example, type

xPCTarget

Add any required comments.

5 Click Next.

6 From the driver-type menu list, select XCP.

7 Click Driver settings.

The XCP driver settings window is displayed.

8 In the Transport layer pane, from the Interface menu list, select TCP.

9 In the Transport layer pane, click Configuration.

10 In the Host field, enter the IP address of your target computer.

This is the target computer to which you have downloaded the target
application.

11 Set the port number to 5555.

12 Click OK.

13 If you have Vector CANape Version 5.6.32.3 and higher, and you want to
use the xPC Target software to acquire event driven data:

a In the Driver pane of the XCP driver settings window, click Extended
driver settings.

b Set the ODT_ENTRY_ADDRESS_OPT_DISABLED parameter to Yes.

With this setting, events that are generated in the xPC Target
environment will be based on the model base sample time. For example,
a sample time of 0.001 seconds will appear as 100 milliseconds.

c Click OK.

2-7

2 Vector CANape® Support

14 In the XCP driver settings window, verify the connection to the target
computer by clicking Test connection. This command succeeds only if the
target computer is running and connected to the host computer. Be sure
that no other host is connected to the target computer.

15 Click OK.

The Device dialog is displayed.

16 Click Next.

Do not exit the dialog.

You can now configure the location of the target application A2L (ASAP2) file
for the CANape database. See “Configuring the Location of the A2L (ASAP2)
File” on page 2-8.

If you want to load a new target application, you must close Vector CANape,
download a new target application through the MATLAB interface, then
restart Vector CANape.

Configuring the Location of the A2L (ASAP2) File
Use this procedure to configure the location of the target application A2L
(ASAP2) file for Vector CANape. This procedure assumes that you have
already configured the Vector CANape device and are still in the device
configuration dialog.

1 Clear Automatic detection of the database name.

2 At the Database name parameter, click Browse.

The Select database for device xPCTarget dialog is displayed.

3 Browse to the directory that contains the A2L (ASAP2) file for the target
application.

This might be the directory in which you built the target application, or
it might be the directory you specified during the target application build
configuration.

4 Select the A2L (ASAP2) file. Click Open.

2-8

Configuring the Model for Vector CANape®

A dialog requests confirmation of ASAP2 settings.

5 Click Yes.

6 Click Next.

7 Click Next.

8 Click Next.

9 Click OK.

10 You have completed the configuration of Vector CANape for the xPC Target
software environment.

You can now monitor and control your xPC Target system. The CANape
database should be populated with a comprehensive list of target application
signals and parameters that are available. See “Event Mode Data Acquisition”
on page 2-11.

During target application changes, you might need to manually reload the
A2L (ASAP2) that is generated by the xPC Target build process. You can do
this from the CANape Database editor.

Providing A2L (ASAP2) Files for Vector CANape
This topic assumes that:

• You have set up and built your model to generate data for Vector CANape.
If you have not yet done so, see “Setting Up and Building the Model” on
page 2-4.

• You have created a Vector CANape project directory and know the name of
that project directory.

To enable Vector CANape to load the A2L (ASAP2) file for the model xpcosc:

1 In a DOS window, change directory to the one that contains the A2L
(ASAP2) file from the previous procedure. For example:

cd D:\work\xpc

2-9

2 Vector CANape® Support

2 Look for and copy the A2L (ASAP2) file to your Vector CANape project
directory. For example:

copy xpcosc.a2l C:\MyProject

Vector CANape automatically loads the target application A2L (ASAP2) file
when it connects to the target computer.

2-10

Event Mode Data Acquisition

Event Mode Data Acquisition

In this section...

“Guidelines” on page 2-11

“Limitations” on page 2-11

Guidelines
To acquire event mode data rather than polling data, note the following
guidelines:

• Set the priority of the xcpserver block to the lowest possible. See suggested
priority values in “Setting Up and Building the Model” on page 2-4.

• The xPC Target software generates events at the base sample rate; this
execution rate is the fastest possible. If you are tracing a signal that is
updated at a slower rate than the base sample rate, you must decimate the
data to match the actual execution. (The xPC Target software generates
the event name with the ASAP2 generation during model code generation.)

• You can associate signals with the event generation through the Vector
CANape graphical user interface.

See the Vector CANape documentation for further details on associating
events with signals.

Limitations
The event mode data acquisition has the following limitations:

• Every piece of data that the xPC Target software adds to the event list
slows down the target application. The amount of data that you can observe
depends on the model sample time and the speed of the target computer. It
is possible to overload the target computer CPU to the point where data
integrity is reduced.

• You can only trace signals and scalar parameters. You cannot trace vector
parameters.

2-11

2 Vector CANape® Support

2-12

3

Incorporating Fortran
S-Functions

• “Fortran S-Functions” on page 3-2

• “Fortran Atmosphere Model” on page 3-4

3 Incorporating Fortran S-Functions

Fortran S-Functions
The xPC Target product supports Fortran in Simulink models using
S-functions. For more details, see “Create Level-2 Fortran S-Functions” and
“Port Legacy Code”.

In this section...

“Prerequisites” on page 3-2

“Simulink Demos Folder” on page 3-2

“Steps to Incorporate Fortran” on page 3-3

Prerequisites
You must have xPC Target Version 1.3 or later to use Fortran for xPC Target
applications. The xPC Target product supports the Fortran compiler(s) listed
here:

http://www.mathworks.com/support/compilers/current_release/

Simulink Demos Folder
The Simulink demos folder contains a tutorial and description on how to
incorporate Fortran code into a Simulink model using S-functions. To access
the tutorial and description,

1 In the MATLAB Command Window, type

demos

A list of MATLAB products appears on the left side of the MATLAB Online
Help window.

2 From the left side of the window, select Simulink > Demos > Modeling
Features.

A list of Simulink examples appears.

3 Click Custom Code and Hand Coded Blocks using the S-function
API.

3-2

http://www.mathworks.com/support/compilers/current_release/

Fortran S-Functions

The associated Simulink examples page opens.

4 Click Open this model.

S-function examples are displayed.

5 Double-click the Fortran S-functions block.

Fortran S-functions and associated templates appear.

Steps to Incorporate Fortran
This topic lists the general steps to incorporate Fortran code into an xPC
Target application. Detailed commands follow in the accompanying examples.

1 Using the Fortran compiler, compile the Fortran code (subroutines (*.f)).
You will need to specify particular compiler options.

2 Write a Simulink C-MEX wrapper S-function. This wrapper S-function
calls one or more of the Fortran subroutines in the compiled Fortran object
code from step 1.

3 Use the mex function to compile this C-MEX S-function using a Visual
C/C++ compiler. Define several Fortran run-time libraries to be linked in.

This step creates the Simulink S-function MEX-file.

4 Run a simulation C-MEX file with the Simulink software to validate the
compiled Fortran code and wrapper S-function.

5 Copy relevant Fortran run-time libraries to the application build folder for
the xPC Target application build.

6 Define the Fortran libraries, and the Fortran object files from step 1, in the
Simulink Coder™ dialog box of the Simulink model. You must define these
libraries and files as additional components to be linked in when the xPC
Target application link stage takes place.

7 Initiate the xPC Target specific Simulink Coder build procedure for the
example model. Simulink Coder builds and downloads xPC Target onto
the target computer.

3-3

3 Incorporating Fortran S-Functions

Fortran Atmosphere Model
This example uses the example Atmosphere model that comes with the
Simulink product. The following procedures require you to know how to write
Fortran code according to Simulink and xPC Target software requirements.

Before you start, create an xPC Target Simulink model for the Atmosphere
model. See “Creating a Fortran Atmosphere Model” on page 3-4.

In this section...

“Creating a Fortran Atmosphere Model” on page 3-4

“Compiling Fortran Files” on page 3-7

“Creating a C-MEX Wrapper S-Function” on page 3-8

“Compiling and Linking the Wrapper S-Function” on page 3-12

“Validating the Fortran Code and Wrapper S-Function” on page 3-13

“Preparing the Model for the xPC Target Application Build” on page 3-14

“Building and Running the xPC Target Application” on page 3-16

Creating a Fortran Atmosphere Model
To create an xPC Target Atmosphere model in Fortran, you need to add an
xPC Target Scope block to the sfcndemo_atmosmodel. Perform this procedure
if you do not already have an xPC Target Atmosphere model for Fortran.

1 From the MATLAB window, change folder to the working folder, for
example, xpc_fortran_test.

3-4

Fortran Atmosphere Model

2 Type

sfcndemo_atmos

The sfcndemo_atmos model is displayed.

3 Add an xPC Target Scope block of type Target.

4 Connect this Scope block to the Tamb, K signal.

The model sfcndemo_atmos should look like the figure shown.

3-5

3 Incorporating Fortran S-Functions

5 Double-click the target Scope block.

6 From the Scope mode parameter, choose Graphical rolling.

7 For the Number of samples parameter, enter 240.

8 Click Apply, then OK.

3-6

Fortran Atmosphere Model

9 Double-click the Sine Wave block.

10 For the Sample time parameter, enter 0.05.

11 Click OK.

12 From the File menu, click Save as. Browse to your current working folder,
for example, xpc_fortran_test. Enter a filename. For example, enter
fortran_atmos_xpc and then click Save.

Your next task is to compile Fortran code. See “Compiling Fortran Files”
on page 3-7.

Compiling Fortran Files

1 In the MATLAB Command Window, copy the file sfun_atmos_sub.F into
your Fortran working folder, for example, xpc_fortran_test. This is
sample Fortran code that implements a subroutine for the Atmosphere
model.

2 From Fortran_compiler_dir\lib\ia32, copy the following files to the
working folder:

• libifcore.lib

• libifcoremd.lib

• ifconsol.lib

• libifportmd.lib

• libifport.lib

• libmmd.lib

• libm.lib

• libirc.lib

• libmmt.lib

• libifcoremt.lib

• svml_disp.lib

3-7

3 Incorporating Fortran S-Functions

3 From a DOS prompt, change folder to the working folder and create the
object file. For example:

ifort /fpp /Qprec /c /nologo /MT /fixed /iface:cref -Ox sfun_atmos_sub.F

Your next task is to create a wrapper S-function. See “Creating a C-MEX
Wrapper S-Function” on page 3-8.

Creating a C-MEX Wrapper S-Function
This topic describes how to create a C-MEX wrapper S-function for the
Fortran code in sfun_atmos_sub.f. This function is a level 2 S-function. It
incorporates existing Fortran code into a Simulink S-function block and lets
you execute Fortran code from the Simulink software. Before you start:

• Compile your Fortran code. See “Compiling Fortran Files” on page 3-7.

• Become familiar with the guidelines and calling conventions for Simulink
Fortran level 2 S-functions (see “Create Level-2 Fortran S-Functions”).

• Implement the required callback functions using standard functions to
access the fields of the S-function’s simulation data structure,SimStruct
(see “Templates for C S-Functions”).

The following procedure outlines the steps to create a C-MEX wrapper
S-function to work with sfun_atmos_sub.f. It uses the template file
sfuntmpl_gate_fortran.c.

Note This topic describes how to create a level 2 Fortran S-function for the
fortran_atmos_xpc model. This file is also provided in sfun_atmos.c.

1 Copy the file sfuntmpl_gate_fortran.c to your working folder.

This is your C-MEX file for calling into your Fortran subroutine. It works
with a simple Fortran subroutine.

2 With a text editor of your choice, open sfuntmpl_gate_fortran.c.

3 Inspect the file. This is a self-documenting file.

3-8

Fortran Atmosphere Model

This file contains placeholders for standard Fortran level 2 S-functions,
such as the S-function name specification and Simulink callback methods.

4 In the #define S_FUNCTION_NAME definition, add the name of your
S-function. For example, edit the definition line to look like

#define S_FUNCTION_NAME sfun_atmos

5 In the file, read the commented documentation for fixed-step and
variable-step fixed algorithm support.

6 Delete or comment out the code for fixed-step and variable-step
fixed-algorithm support. You do not need these definitions for this example.

7 Find the line that begins extern void nameofsub_. Specify the function
prototype for the Fortran subroutine. For the sfun_atmos_sub.obj
executable, the Fortran subroutine is atmos_. Replace

extern void nameofsub_(float *sampleArgs, float *sampleOutput);

with

extern void atmos_(float *falt, float *fsigma, float *fdelta, float *ftheta);

Enter a #if defined/#endif statement like the following for Windows
compilers.

#ifdef _WIN32
#define atmos_ atmos
#endif

8 Add a typedef to specify the parameters for the block. For example,

typedef enum {T0_IDX=0, P0_IDX, R0_IDX, NUM_SPARAMS } paramIndices;

#define T0(S) (ssGetSFcnParam(S, T0_IDX))

#define P0(S) (ssGetSFcnParam(S, P0_IDX))

#define R0(S) (ssGetSFcnParam(S, R0_IDX))

9 Use the mdlInitializeSizes callback to specify the number of inputs,
outputs, states, parameters, and other characteristics of the S-function.
S-function callback methods use SimStruct functions to store and retrieve

3-9

3 Incorporating Fortran S-Functions

information about an S-function. Be sure to specify the temperature,
pressure, and density parameters. For example,

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S,NUM_SPARAMS); /* expected number */

#if defined(MATLAB_MEX_FILE)

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) goto EXIT_POINT;

#endif

{

int iParam = 0;

int nParam = ssGetNumSFcnParams(S);

for (iParam = 0; iParam < nParam; iParam++)

{

ssSetSFcnParamTunable(S, iParam, SS_PRM_SIM_ONLY_TUNABLE);

}

}

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

ssSetNumInputPorts(S, 1);

ssSetInputPortWidth(S, 0, 3);

ssSetInputPortDirectFeedThrough(S, 0, 1);

ssSetInputPortRequiredContiguous(S, 0, 1);

ssSetNumOutputPorts(S, 3);

ssSetOutputPortWidth(S, 0, 3); /* temperature */

ssSetOutputPortWidth(S, 1, 3); /* pressure */

ssSetOutputPortWidth(S, 2, 3); /* density */

#if defined(MATLAB_MEX_FILE)

EXIT_POINT:

#endif

return;

}

10 Use the mdlInitializeSampleTimes callback to specify the sample rates
at which this S-function operates.

static void mdlInitializeSampleTimes(SimStruct *S)

3-10

Fortran Atmosphere Model

{
ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);
ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

11 Use the mdlOutputs callback to compute the signals that this block emits.

static void mdlOutputs(SimStruct *S, int_T tid)
{

double *alt = (double *) ssGetInputPortSignal(S,0);
double *T = (double *) ssGetOutputPortRealSignal(S,0);
double *P = (double *) ssGetOutputPortRealSignal(S,1);
double *rho = (double *) ssGetOutputPortRealSignal(S,2);
int w = ssGetInputPortWidth(S,0);
int k;
float falt, fsigma, fdelta, ftheta;

for (k=0; k<w; k++) {

/* set the input value */
falt = (float) alt[k];

/* call the Fortran routine using pass-by-reference */
atmos_(&falt, &fsigma, &fdelta, &ftheta);

/* format the outputs using the reference parameters */
T[k] = mxGetScalar(T0(S)) * (double) ftheta;
P[k] = mxGetScalar(P0(S)) * (double) fdelta;
rho[k] = mxGetScalar(R0(S)) * (double) fsigma;

}
}

12 Use the mdlTerminate callback to perform any actions required at
termination of the simulation. Even if you do not have any operations here,
you must include a stub for this callback.

static void mdlTerminate(SimStruct *S)
{
}

3-11

3 Incorporating Fortran S-Functions

13 In the file, read the commented documentation for the following callbacks:

• mdlInitalizeConditions — Initializes the state vectors of this
S-function.

• mdlStart— Initializes the state vectors of this S-function. This function
is called once at the start of the model execution.

• mdlUpdate — Updates the states of a block.

These are optional callbacks that you can define for later projects. You do
not need to specify these callbacks for this example.

14 Delete or comment out the code for these callbacks.

15 Save the file under another name. For example, save this file as
sfun_atmos.c. Do not overwrite the template file.

16 Copy the file sfun_atmos.c into your Fortran working folder, for example,
xpc_fortran_test.

Your next task is to compile and link the wrapper S-function. See “Compiling
and Linking the Wrapper S-Function” on page 3-12.

Compiling and Linking the Wrapper S-Function
This topic describes how to create (compile and link) a C-MEX S-function
from the sfun_atmos.c file. Before you start, copy the following files into the
working folder, xpc_fortran_test. (You should have copied these files when
you performed the steps in “Compiling Fortran Files” on page 3-7.)

• libifcore.lib

• libifcoremd.lib

• ifconsol.lib

• libifportmd.lib

• libifport.lib

• libmmd.lib

• libm.lib

• libirc.lib

3-12

Fortran Atmosphere Model

• libmmt.lib

• libifcoremt.lib

• svml_disp.lib

Use the mex command with a C/C++ compiler such as Microsoft Visual C/C++
Version 6.0.

This topic assumes that you have created a C-MEX wrapper S-function. See
“Creating a C-MEX Wrapper S-Function” on page 3-8.

Invoking the mex command requires you to compile the wrapper C file
sfun_atmos.c. Be sure to link in the following:

• Compiled Fortran code: sfun_atmos_sub.obj

• Fortran run-time libraries to resolve external function references and
provide the Fortran run-time environment

When you are ready, mex the code. For example

mex -v LINKFLAGS="$LINKFLAGS /NODEFAULTLIB:libcmt.lib libifcoremd.lib

ifconsol.lib libifportmd.lib libmmd.lib libirc.lib svml_disp.lib" sfun_atmos.c

sfun_atmos_sub.obj

Note The command and all its parameters must be on one line.

This command compiles and links the sfun_atmos_sub.c file. It creates the
sfun_atmos.mex file in the same folder.

Your next task is to validate the Fortran code and wrapper S-function. See
“Validating the Fortran Code and Wrapper S-Function” on page 3-13.

Validating the Fortran Code and Wrapper S-Function
Validate the generated C-MEX S-function, sfun_atmos.mex. Bind the C-MEX
S-function to an S-function block found in the Simulink block library. You
can mask the S-function block like any other S-function block to give it a
specific dialog box.

3-13

3 Incorporating Fortran S-Functions

This topic assumes that you have compiled and linked a wrapper S-function.
See “Compiling and Linking the Wrapper S-Function” on page 3-12.

The Atmosphere model example has a Simulink model associated with it.

1 In the MATLAB window, type

fortran_atmos_xpc

This opens the Simulink model associated with the Atmosphere model.
This model includes an S-function block bound to sfun_atmos.mex.

2 Select Simulation > Run to simulate the model.

3 Examine the behavior of the Atmosphere model by looking at the signals
traced by the Scope block.

Your next task is to prepare the model to build an xPC Target application.
See “Preparing the Model for the xPC Target Application Build” on page 3-14.

Preparing the Model for the xPC Target Application
Build
Before you build the Atmosphere model for xPC Target, define the following
build dependencies:

• The build procedure has access to sfun_atmos.sub.obj for the link stage.

• The build procedure has access to the Fortran run-time libraries (see
“Compiling and Linking the Wrapper S-Function” on page 3-12) for the
link stage.

This topic assumes that you have validated the Fortran code and wrapper
S-function (see “Validating the Fortran Code and Wrapper S-Function” on
page 3-13).

1 In the MATLAB window, type

fortran_atmos_xpc

This opens the Simulink model associated with the Atmosphere model.

3-14

Fortran Atmosphere Model

2 In the Simulink model, click Simulation > Model Configuration
Parameters.

The Configuration Parameters dialog box appears.

3 In the left pane, click the Code Generation node.

The Code Generation pane opens.

4 In the Target selection section, click the Browse button at the System
target file list.

5 Click xpctarget.tlc.

6 In the Make command field, replace make_rtw with one for the Fortran
compiler.

make_rtw S_FUNCTIONS_LIB="..\sfun_atmos_sub.obj ..\libifcoremt.lib ..\libmmt.lib

..\ifconsol.lib ..\libifport.lib ..\libirc.lib ..\svml_disp.lib"

Note The command and all its parameters must be on one line.

7 Click Apply.

8 Click OK.

9 From the File menu, click Save.

This command requires that the application build folder be the current folder
(one level below the working folder, xpc_fortran_test). Because of this, all
additional dependency designations must start with ..\.

Specify all Fortran object files if your model (S-Function blocks) depends
on more than one file. For this example, you specify the run-time libraries
only once.

Your next task is to build and run the xPC Target application. See “Building
and Running the xPC Target Application” on page 3-16.

3-15

3 Incorporating Fortran S-Functions

Building and Running the xPC Target Application
This topic assumes that you have prepared the model to build an xPC Target
application. See “Preparing the Model for the xPC Target Application Build”
on page 3-14.

Build and run the xPC Target application as usual. Be sure that you have
defined Microsoft Visual C/C++ as the xPC Target C compiler using.

After the build procedure succeeds, xPC Target automatically downloads the
application to the target computer. The Atmosphere model already contains
an xPC Target Scope block. This allows you to verify the behavior of the
model. You will be able to compare the signals displayed on the target
screen with the signals obtained earlier by the Simulink simulation run (see
“Validating the Fortran Code and Wrapper S-Function” on page 3-13).

3-16

4

Target Application
Environment

• “xPC Target Options Configuration Parameter” on page 4-4

• “xPC Target Explorer” on page 4-5

• “Command Line Setup for Single Target Computer Systems” on page 4-9

• “Command Line C Compiler Configuration” on page 4-10

• “Command Line Network Communication Setup” on page 4-12

• “Command Line PCI Bus Ethernet Setup” on page 4-13

• “PCI Bus Ethernet Hardware” on page 4-14

• “Command Line PCI Bus Ethernet Settings” on page 4-16

• “Command Line USB-to-Ethernet Setup” on page 4-19

• “USB-to-Ethernet Hardware” on page 4-20

• “Command Line USB-to-Ethernet Settings” on page 4-22

• “Command Line ISA Bus Ethernet Setup” on page 4-24

• “ISA Bus Ethernet Hardware” on page 4-25

• “Command Line ISA Bus Ethernet Settings” on page 4-27

• “Ethernet Card Selection by EthernetIndex” on page 4-30

• “Command Line Serial Communication Setup” on page 4-32

• “RS-232 Hardware” on page 4-33

• “Command Line RS-232 Settings” on page 4-34

• “Command Line Target Boot Methods” on page 4-36

4 Target Application Environment

• “Command Line CD Boot Method” on page 4-37

• “Command Line DOS Loader Boot Method” on page 4-39

• “Command Line Removable Disk Boot Method” on page 4-41

• “Command Line Setup for Multiple Target Computer Systems” on page 4-43

• “Command Line Network Communication Setup: Multiple Target
Computers” on page 4-44

• “Command Line PCI Bus Ethernet Setup: Multiple Target Computers”
on page 4-45

• “PCI Bus Ethernet Hardware” on page 4-46

• “Command Line PCI Bus Ethernet Settings: Multiple Target Computers”
on page 4-48

• “Command Line USB-to-Ethernet Setup: Multiple Target Computers”
on page 4-51

• “USB-to-Ethernet Hardware” on page 4-52

• “Command Line USB-to-Ethernet Settings: Multiple Target Computers”
on page 4-54

• “Command Line ISA Bus Ethernet Setup: Multiple Target Computers”
on page 4-57

• “ISA Bus Ethernet Hardware” on page 4-58

• “Command Line ISA Bus Ethernet Settings: Multiple Target Computers”
on page 4-60

• “Ethernet Card Selection by EthernetIndex: Multiple Target Computers”
on page 4-63

• “Command Line Serial Communication Setup: Multiple Target Computers”
on page 4-66

• “RS-232 Hardware” on page 4-67

• “Command Line RS-232 Settings: Multiple Target Computers” on page 4-68

• “Command Line Target Boot Methods: Multiple Target Computers” on
page 4-70

4-2

• “Command Line Network Boot Method: Multiple Target Computers” on
page 4-71

• “Command Line CD Boot Method: Multiple Target Computers” on page
4-73

• “Command Line DOS Loader Boot Method: Multiple Target Computers”
on page 4-75

• “Command Line Removable Disk Boot Method: Multiple Target
Computers” on page 4-77

4-3

4 Target Application Environment

xPC Target Options Configuration Parameter
The configuration parameters xPC Target Options node appears when you
select one of the xPC Target settings for System target file parameter in the
Code Generation pane of the Configuration Parameter dialog box:

• xpctarget.tlc

Generate code for an xPC Target target.

• xpctargetert.tlc

Generate code for an xPC Target target using the required Embedded
Coder™ software.

The xPC Target Options node allows you to specify how the software
generates the target application. You might need to enter and select these
options before you create (build) a target application. The default values of
these options are reasonable for target application creation.

Tip If you set up your model to xPC Target Embedded Coder (xpctargetert.tlc),
you can create a custom Code Replacement Library (CRL), which must be
based upon the xPC Target BLAS (XPC_BLAS). For more on CRLs, see:

• “Introduction to Code Replacement Libraries”

• Code Replacement Library (CRL) and Embedded Targets

See “Setting Configuration Parameters” for more information on the xPC
Target Options node.

4-4

xPC Target™ Explorer

xPC Target Explorer
xPC Target Explorer is a graphical user interface for the xPC Target product.
It runs on your host computer and provides a single point of contact for almost
all interactions.

Note Do not use Simulink external mode while xPC Target Explorer is
running. Use only one interface or the other.

In this section...

“Basic Operations” on page 4-5

“Default Target Computers” on page 4-6

“Saving Environment Properties” on page 4-7

Basic Operations
Through xPC Target Explorer, you can perform basic operations, such as:

• Add and configure target computers for the xPC Target software, up to
64 target computers

• Create boot CDs, removable drives, and network boot images for particular
target computers

• Connect the target computers for your xPC Target system to the host
computers

• Download a prebuilt target application, or DLM, to a target computer

• Start and stop the application that has been downloaded to the target

• Add host, target, or file scopes to the downloaded target application

• Monitor signals

• Add signals to xPC Target scopes and remove them

• Start and stop scopes

4-5

4 Target Application Environment

• Adjust parameter values for the signals while the target application is
running

To start xPC Target Explorer, type xpcexplr in the MATLAB Command
Window.

There are four major panes in xPC Target Explorer:

• Targets pane — The top-left Targets pane lists all the targets in your xPC
Target hierarchy. Under each target are nodes representing the properties
and (if accessible) the file system of the target.

• Applications pane — The bottom left Applications pane lists all of the
target applications running on the targets. Under each application are
nodes representing the properties, signal and parameter groupings, and (if
available) the model hierarchy of the application.

• Scopes pane — The top right Scopes pane lists all of the scopes, whether
predefined or dynamically created, defined on the active target applications.

• Center pane — The center pane displays under separate tabs information
associated with nodes selected in one of the other panes.

You can interact with xPC Target Explorer through menus and a toolbar. You
can also right-click objects and select actions from the context menu for those
objects. The tutorials in the xPC Target documentation describe procedures
using mouse operations.

Default Target Computers
When you first start xPC Target Explorer, it opens a default node, TargetPC1.
You can configure this node for a target computer, then connect the node to
the target computer. If you later build a target application from a Simulink
model, the xPC Target software builds and downloads that application the
default target computer.

You can add other target computer nodes and designate one of them as the
default target computer instead of the first one. To set a target computer
node as the default, right-click that node and select Set As Default from the
context-sensitive menu. The default target computer node is boldface.

4-6

xPC Target™ Explorer

If you delete a default target computer node, the target computer node
preceding it becomes the default target computer node. The last target
computer node is always the default target computer node and cannot be
deleted.

If you want to use the xPC Target command-line interface to work with the
target computer, you must indicate which target computer the command is
interacting with. If you do not identify a particular target computer, the xPC
Target software uses the default target computer.

• The target computer commands getxpcenv and setxpcenv get and set
environment properties for a single target computer (the default). See
“Command Line Setup for Single Target Computer Systems” on page 4-9.

• The target computer environment object, xpctarget.targets, manages
collective and individual target computer environments. See “Command
Line Setup for Multiple Target Computer Systems” on page 4-43.

Tip When you instantiate the target object constructor xpctarget.xpc
without any arguments (for example, tg=xpc), the constructor uses the
communication properties of the default target computer to communicate
with the target computer.

Saving Environment Properties
The xPC Target Explorer environment consists of the property settings you
define for the Targets pane. When you have settings that you are happy
with, you can save them for the next session.

1 Type xpcexplr in the MATLAB Command Window.

2 Set properties in the Targets pane.

After you change a property, the Save icon and menu item become enabled.

3 Click File > Save or click the Save icon in the toolbar.

4-7

4 Target Application Environment

Tip If you do not explicitly save the environment settings, xPC Target
Explorer asks on exit if you want to save them.

4-8

Command Line Setup for Single Target Computer Systems

Command Line Setup for Single Target Computer Systems
Use the following procedures to set up the software and hardware
configuration for single target computer systems.

Tip This procedure assumes that you installed and configured a C compiler
as part of xPC Target installation. If not, see “Command Line C Compiler
Configuration” on page 4-10.

1 “Command Line Network Communication Setup” on page 4-12

2 “Command Line Serial Communication Setup” on page 4-32

3 “Command Line Target Boot Methods” on page 4-36

Continue with “Run Confidence Test on Configuration”.

4-9

4 Target Application Environment

Command Line C Compiler Configuration
To configure the host computer for the C compiler using MATLAB language:

1 Install a supported C compiler on the host computer.

Note For more about the xPC Target C compiler requirements, see
http://www.mathworks.com/support/compilers/current_release/

2 In the MATLAB Command Window, type:

xpcsetCC('setup')

The function queries the host computer for C compilers that the xPC Target
environment supports. It returns output like the following:

Select your compiler for xPC Target.

[1] Microsoft Visual C++ Compilers 2008 Professional Edition (SP1) in

c:\Program Files (x86)\Microsoft Visual Studio 9.0

[2] Microsoft Visual C++ Compilers 2010 Professional in

C:\Program Files (x86)\Microsoft Visual Studio 10.0

[0] None

Compiler:

Note Do not use the mex -setup command to set the C compiler for the
xPC Target software.

3 At the Compiler prompt, enter the number for the compiler you want to
use. For example, 2.

The function verifies that you have selected the required compiler:

Verify your selection:

4-10

http://www.mathworks.com/support/compilers/current_release/

Command Line C Compiler Configuration

Compiler: Microsoft Visual C++ Compilers 2010 Professional
Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Are these correct [y]/n?

4 Type y or press Enter to verify the selection.

The function finishes the dialog.

Done...

4-11

4 Target Application Environment

Command Line Network Communication Setup
On the host computer, set the properties that your host and target computers
require for network communication with a single target computer. For serial
communication, see “Command Line Serial Communication Setup” on page
4-32.

• “Command Line PCI Bus Ethernet Setup” on page 4-13

• “Command Line USB-to-Ethernet Setup” on page 4-19

• “Command Line ISA Bus Ethernet Setup” on page 4-24

Continue with “Command Line Target Boot Methods” on page 4-36.

4-12

Command Line PCI Bus Ethernet Setup

Command Line PCI Bus Ethernet Setup
If your target computer has a PCI bus, use an Ethernet card for the PCI bus.
The PCI bus has a faster data transfer rate than the other bus types.

Follow these procedures:

1 “PCI Bus Ethernet Hardware” on page 4-14

2 “Command Line PCI Bus Ethernet Settings” on page 4-16

Continue with “Command Line Target Boot Methods” on page 4-36.

4-13

4 Target Application Environment

PCI Bus Ethernet Hardware
To install the PCI bus Ethernet card:

1 Acquire a supported PCI bus Ethernet card.

For the most current network communications requirements,
see http://www.mathworks.com/products/xpctarget/-
supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf.

Note To boot the target computer from the network, you must install on
the target computer an Ethernet adapter card compatible with the Preboot
eXecution Environment (PXE) specification.

2 Turn off your target computer.

3 If the target computer already has an unsupported Ethernet card, remove
the card.

4 Plug the supported Ethernet card into a free PCI bus slot.

5 Assign a static IP address to the target computer Ethernet card.

Note Although the target computer Ethernet card must have a static IP
address, the host computer network adapter card can have a Dynamic Host
Configuration Protocol (DHCP) address and can be any computer on the
network. When using the product with TCP/IP, you must configure the
DHCP server to reserve all static IP addresses to prevent these addresses
from being assigned to other systems.

6 Connect your target computer Ethernet card to your LAN using an
unshielded twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with
RJ45 connectors. Both computers must have static IP addresses. If the

4-14

http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf
http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf

PCI Bus Ethernet Hardware

host computer has a second network adapter card, that card can have a
DHCP address.

Continue with “Command Line PCI Bus Ethernet Settings” on page 4-16.

4-15

4 Target Application Environment

Command Line PCI Bus Ethernet Settings
After you install the PCI bus Ethernet card, specify the environment
properties for the host and target computers.

Note You must specify these properties before you can build and download
a target application.

1 At the MATLAB prompt, set the host-target communication type to
'TcpIp':

setxpcenv('HostTargetComm', 'TcpIp');

2 Set the IP address for your target computer (for example '10.10.10.15'):

setxpcenv('TcpIpTargetAddress', '10.10.10.15');

Ask your system administrator for this value.

3 Set the subnet mask address of your LAN (for example '255.255.255.0'):

setxpcenv('TcpIpSubNetMask', '255.255.255.0');

Ask your system administrator for this value.

4 Set the TCP/IP port (optional) to any value higher than '20000' and less
than '65536'.

setxpcenv('TcpIpTargetPort', '22222');

This property is set by default to '22222', a value higher than the reserved
area (telnet, ftp, and so on).

Ask your system administrator for this value.

5 Set the TCP/IP gateway (optional) to the gateway required to access the
target computer, if any.

setxpcenv('TcpIpGateway', '255.255.255.255');

4-16

Command Line PCI Bus Ethernet Settings

This property is set by default to '255.255.255.255', which means that
you do not use a gateway to connect to your target computer.

If you communicate with the target computer from within your LAN, you
might not need to change this setting. If you communicate from a host
computer located in a LAN different from your target computer (especially
via the Internet), you must define a gateway and enter its IP address in
this box.

Ask your system administrator for the IP address of the required gateway.

Tip If you connect your computers with a crossover cable, leave this
property as '255.255.255.255'.

6 Set the bus type to 'PCI'.

setxpcenv('TcpIpTargetBusType', 'PCI');

7 Set the target driver to one of '3C90x', `I8254x', 'I82559', 'NS83815',
'R8139', 'R8168', `Rhine', 'RTLANCE', or `Auto' (the default).

setxpcenv('TcpIpTargetDriver', 'Auto');

Tip

• For target driver `Auto', the software determines the target computer
TCP/IP driver from the card installed on the target computer.

• To configure the software for a crossover Ethernet cable connection,
use 'I82559'.

• If no supported Ethernet card is installed in your target computer, the
software returns an error.

8 If the target computer has multiple Ethernet cards, follow the procedure in
“Ethernet Card Selection by EthernetIndex” on page 4-30.

9 Save the changes to your environment:

4-17

4 Target Application Environment

tgs=xpctarget.targets;
tgs.save

10 To configure another PCI target computer for network access using the
command line, see “Command Line PCI Bus Ethernet Setup: Multiple
Target Computers” on page 4-45.

Continue with “Command Line Target Boot Methods” on page 4-36.

4-18

Command Line USB-to-Ethernet Setup

Command Line USB-to-Ethernet Setup
If the target computer has a USB 2.0 port but no PCI or ISA Ethernet card,
use a USB-to-Ethernet adapter.

Follow these procedures:

1 “USB-to-Ethernet Hardware” on page 4-20

2 “Command Line USB-to-Ethernet Settings” on page 4-22

Continue with “Command Line Target Boot Methods” on page 4-36.

4-19

4 Target Application Environment

USB-to-Ethernet Hardware
To install the USB-to-Ethernet adapter:

1 Acquire a supported USB-to-Ethernet adapter.

For the most current network communications requirements,
see http://www.mathworks.com/products/xpctarget/-
supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf.

Note To boot the target computer from the network, you must install
on the target computer a USB-to-Ethernet adapter compatible with the
Preboot eXecution Environment (PXE) specification.

2 Turn off your target computer.

3 Plug an Ethernet-to-USB adapter into the USB port on the target.

4 Connect the Ethernet-to-USB adapter to your LAN using an unshielded
twisted-pair (UTP) cable.

5 Assign a static IP address to the target computer USB-to-Ethernet adapter.

Note Although the target computer Ethernet card must have a static IP
address, the host computer network adapter card can have a Dynamic Host
Configuration Protocol (DHCP) address and can be any computer on the
network. When using the product with TCP/IP, you must configure the
DHCP server to reserve all static IP addresses to prevent these addresses
from being assigned to other systems.

6 Connect your target computer Ethernet card to your LAN using an
unshielded twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with
RJ45 connectors. Both computers must have static IP addresses. If the

4-20

http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf
http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf

USB-to-Ethernet Hardware

host computer has a second network adapter card, that card can have a
DHCP address.

Note Do not connect the host computer to the target computer using a
USB cable. As seen from the host computer, a USB-to-Ethernet adapter
plugged into the target computer USB port is an Ethernet card on the
target computer.

Continue with “Command Line USB-to-Ethernet Settings” on page 4-22.

4-21

4 Target Application Environment

Command Line USB-to-Ethernet Settings
After you have installed the USB-to-Ethernet adapter, specify the
environment properties for the host and target computers.

Note You must specify these properties before you can build and download
a target application.

1 At the MATLAB prompt, set the host-target communication type to
'TcpIp':

setxpcenv('HostTargetComm', 'TcpIp');

2 Set the IP address for your target computer (for example '10.10.10.15'):

setxpcenv('TcpIpTargetAddress', '10.10.10.15');

Ask your system administrator for this value.

3 Set the subnet mask address of your LAN (for example '255.255.255.0'):

setxpcenv('TcpIpSubNetMask', '255.255.255.0');

Ask your system administrator for this value.

4 Set the TCP/IP port (optional) to any value higher than '20000' and less
than '65536'.

setxpcenv('TcpIpTargetPort', '22222');

This property is set by default to '22222', a value higher than the reserved
area (telnet, ftp, and so on).

Ask your system administrator for this value.

5 Set the TCP/IP gateway (optional) to the gateway required to access the
target computer, if any.

setxpcenv('TcpIpGateway', '255.255.255.255');

4-22

Command Line USB-to-Ethernet Settings

This property is set by default to '255.255.255.255', which means that
you do not use a gateway to connect to your target computer.

If you communicate with the target computer from within your LAN, you
might not need to change this setting. If you communicate from a host
computer located in a LAN different from your target computer (especially
via the Internet), you must define a gateway and enter its IP address in
this box.

Ask your system administrator for the IP address of the required gateway.

Tip If you connect your computers with a crossover cable, leave this
property as '255.255.255.255'.

6 Set the bus type to 'USB'.

setxpcenv('TcpIpTargetBusType', 'USB');

7 Set the target driver to one of `USBAX772', `USBAX172', or `Auto'.

setxpcenv('TcpIpTargetDriver', 'Auto');

Note If the target driver is `Auto', the software will default the driver
to `USBAX772', the driver most commonly used.

8 Save the changes to your environment:

tgs=xpctarget.targets;
tgs.save

9 To configure another USB target computer for network access using the
command line, see “Command Line USB-to-Ethernet Setup: Multiple
Target Computers” on page 4-51.

Continue with “Command Line Target Boot Methods” on page 4-36.

4-23

4 Target Application Environment

Command Line ISA Bus Ethernet Setup
Your target computer might not have an available PCI bus slot or USB 2.0
port. In these cases, use an Ethernet card for an ISA bus.

1 “ISA Bus Ethernet Hardware” on page 4-25

2 “Command Line ISA Bus Ethernet Settings” on page 4-27

Continue with “Command Line Target Boot Methods” on page 4-36.

4-24

ISA Bus Ethernet Hardware

ISA Bus Ethernet Hardware
To install an ISA bus Ethernet card:

1 Acquire a supported ISA bus Ethernet card.

For the most current network communications requirements,
see http://www.mathworks.com/products/xpctarget/-
supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf.

Note To boot the target computer from the network, you must install on
the target computer an Ethernet adapter card compatible with the Preboot
eXecution Environment (PXE) specification.

2 Turn off your target computer.

3 On your ISA bus card, assign an IRQ and I/O-port base address by moving
the jumpers or switches on the card. Write down these settings, because
you must enter them in xPC Target Explorer.

Set the IRQ line to 5 and the I/O-port base address to around 0x300. If one
of these hardware settings would lead to a conflict in your target computer,
select another IRQ or I/O-port base address.

If your ISA bus card does not contain jumpers to set the IRQ line and the
base address, after installation use the utility on the installation disk
supplied with your card to manually assign the IRQ line and base address.

If you use an Ethernet card for an ISA bus within a target computer that
has a PCI bus, after installation you must reserve the chosen IRQ line
number for the Ethernet card in the PCI BIOS. Refer to your BIOS setup
documentation to set up the PCI BIOS.

Note Do not configure the card as a PnP-ISA device.

4-25

http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf
http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf

4 Target Application Environment

4 If the target computer already has an unsupported Ethernet card, remove
the card. Plug the compatible network card into a free ISA bus slot.

5 Assign a static IP address to the target computer Ethernet card.

Note Although the target computer Ethernet card must have a static IP
address, the host computer network adapter card can have a Dynamic Host
Configuration Protocol (DHCP) address and can be any computer on the
network. When using the product with TCP/IP, you must configure the
DHCP server to reserve all static IP addresses to prevent these addresses
from being assigned to other systems.

6 Connect your target computer Ethernet card to your LAN using an
unshielded twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with
RJ45 connectors. Both computers must have static IP addresses. If the
host computer has a second network adapter card, that card can have a
DHCP address.

Continue with “Command Line ISA Bus Ethernet Settings” on page 4-27.

4-26

Command Line ISA Bus Ethernet Settings

Command Line ISA Bus Ethernet Settings
After you have installed the ISA bus Ethernet card, specify the environment
properties for the host and target computers.

Note You must specify these properties before you can build and download
a target application.

1 At the MATLAB prompt, set the host-target communication type to
'TcpIp':

setxpcenv('HostTargetComm', 'TcpIp');

2 Set the IP address for your target computer (for example '10.10.10.15'):

setxpcenv('TcpIpTargetAddress', '10.10.10.15');

Ask your system administrator for this value.

3 Set the subnet mask address of your LAN (for example '255.255.255.0'):

setxpcenv('TcpIpSubNetMask', '255.255.255.0');

Ask your system administrator for this value.

4 Set the TCP/IP port (optional) to any value higher than '20000' and less
than '65536'.

setxpcenv('TcpIpTargetPort', '22222');

This property is set by default to '22222', a value higher than the reserved
area (telnet, ftp, and so on).

Ask your system administrator for this value.

5 Set the TCP/IP gateway (optional) to the gateway required to access the
target computer, if any.

setxpcenv('TcpIpGateway', '255.255.255.255');

4-27

4 Target Application Environment

This property is set by default to '255.255.255.255', which means that
you do not use a gateway to connect to your target computer.

If you communicate with the target computer from within your LAN, you
might not need to change this setting. If you communicate from a host
computer located in a LAN different from your target computer (especially
via the Internet), you must define a gateway and enter its IP address in
this box.

Ask your system administrator for the IP address of the required gateway.

Tip If you connect your computers with a crossover cable, leave this
property as '255.255.255.255'.

6 Set the bus type to 'ISA'.

setxpcenv('TcpIpTargetBusType', 'ISA');

7 Set the target driver to one of `NE2000' or `SMC91C9X'. For example:

setxpcenv('TcpIpTargetDriver', 'NE2000');

Note Target driver `Auto' is not supported for bus type ISA.

8 Set the I/O-port base address and IRQ to values that correspond with the
jumper settings or ROM settings on your ISA bus Ethernet card. For
example:

setxpcenv('TcpIpTargetISAMemPort', '0x300');
setxpcenv('TcpIpTargetISAIRQ', '5');

9 Save the changes to your environment:

tgs=xpctarget.targets;
tgs.save;

4-28

Command Line ISA Bus Ethernet Settings

10 To configure another ISA target computer for network access using the
command line, see “Command Line ISA Bus Ethernet Setup: Multiple
Target Computers” on page 4-57.

Continue with “Command Line Target Boot Methods” on page 4-36.

4-29

4 Target Application Environment

Ethernet Card Selection by EthernetIndex
If the target computer has multiple Ethernet cards, you might need to specify
which one to use for host-target communication. Use the following procedure
to discover the Ethernet index of all cards on the target and specify which
card to use.

Note This procedure assumes you intend to use Network boot mode for
routine target operations. To use this mode, you must install on the target
computer an Ethernet adapter card compatible with the Preboot eXecution
Environment (PXE) specification.

1 At the MATLAB prompt, type:

setxpcenv('ShowHardware', 'on');

2 Type xpcexplr in the MATLAB Command Window.

3 In the Targets pane, expand the target computer node.

4 Click the Target Properties icon in the toolbar or double-click
Properties.

5 Select Target settings and clear the check box Graphics mode. This
causes the kernel to run in text mode.

6 Select Boot configuration and set Boot mode to CD or Removable Disk.

Note You can also set Boot mode to Network. However, to connect the
network cables you need to know in advance which Ethernet card the
target computer boots from.

7 Click Create boot disk and follow the prompts to create a new boot disk

8 Insert the new boot disk and reboot the target computer from the computer
boot switch.

4-30

Ethernet Card Selection by EthernetIndex

After the boot is complete, the target monitor displays a list that looks
like this:

index: 0, driver: RTLANCE, Bus: 16, Slot: 7, Func: 0
index: 1, driver: R8139, Bus: 16, Slot: 8, Func: 0
index: 2, driver: I82559, Bus: 16, Slot: 9, Func: 0

Note

• You might need to change the boot order from the target computer BIOS
to allow booting from your disk.

• When ShowHardware is set, the host computer cannot communicate with
the target computer after the kernel boots.

9 Make a note of the index of the Ethernet card you want to use for
host-target communication, for example 2.

10 At the MATLAB prompt, type:

setxpcenv('ShowHardware', 'off');

11 At the MATLAB prompt, type:

setxpcenv('EthernetIndex', '#');

where # indicates the index of the Ethernet card, here index 2.

12 Select Target settings and select the check box Graphics mode.

13 Set Boot mode to Network.

14 Click Create boot disk.

15 Remove the boot disk from the target computer drive and boot the target
computer from the computer boot switch.

The kernel selects the specified Ethernet card as the target computer card,
instead of the default card with index number 0.

4-31

4 Target Application Environment

Command Line Serial Communication Setup
On the host computer, set the properties that your host and target computers
require for serial communication with a single target computer. For network
communication, see “Network Communication Setup”.

Note RS-232 Host-Target communication mode will be removed in a future
release. Use TCP/IP instead.

• “RS-232 Hardware” on page 4-33

• “Command Line RS-232 Settings” on page 4-34

Continue with “Command Line Target Boot Methods” on page 4-36.

4-32

RS-232 Hardware

RS-232 Hardware
Before you can use serial communication for host-target communication, you
must install the following RS-232 hardware:

1 Acquire a null modem cable:

6
7
8
9

9
8
7
6

1
2
3
4
5

5
4
3
2
1

DB9 Female DB9 Female

2 Connect the host and target computers with the null modem cable, using
either the COM1 or COM2 port.

Make a note of which port is in use on the host computer. You will need to
record the host computer port in the environment property settings.

Continue with “Command Line RS-232 Settings” on page 4-34.

4-33

4 Target Application Environment

Command Line RS-232 Settings
After you have installed the serial communication hardware, specify the
environment properties for the host and target computers.

Note

• You must specify these properties before you can build and download
a target application.

• Do not use host scopes and a scope viewer on the host computer to acquire
and display large blocks of data. The slowness of the RS-232 connection
causes large delays for large blocks of data.

• Boot mode type `NetworkBoot' is not supported when serial communication
is used.

1 At the MATLAB prompt, set the host-target communication type to
'RS232':

setxpcenv('HostTargetComm', 'RS232');

2 For host port, select one of `COM1' or `COM2'. For example:

setxpcenv('RS232HostPort', 'COM1');

The default is `COM1'. xPC Target selects the target computer port
automatically.

3 Select a baud rate as high as possible. For example:

setxpcenv('RS232Baudrate', '115200');

The default is 115200.

Note A baud rate less than 38400 can cause communication failures.

4-34

Command Line RS-232 Settings

4 Save the changes to your environment:

tgs=xpctarget.targets;
tgs.save;

5 Repeat this procedure for any target computer for which you have a serial
connection between the host computer and target computer.

Continue with “Command Line Target Boot Methods” on page 4-36.

4-35

4 Target Application Environment

Command Line Target Boot Methods
Choose a boot method that your host and target computers support:

4-36

Command Line CD Boot Method

Command Line CD Boot Method
After you have configured the target computer environment parameters, you
can use a target boot CD or DVD to load and run the xPC Target kernel.
This topic describes using the MATLAB command line to create a boot CD or
DVD for a single target computer system. To use this capability, your host
computer must run under one of the following Windows® systems:

• Microsoft® Windows 7

• Microsoft Windows Vista™

• Microsoft Windows XP Service Pack 2 or 3 with Image Mastering API v2.0
(IMAPIv2.0), available at http://support.microsoft.com/kb/KB932716.

To create a boot CD/DVD for the default target computer:

1 In the MATLAB window, type getxpcenv.

2 In the output of the getxpcenv command, verify that property TargetBoot
is CDBoot.

Tip If required, update property TargetBoot, for instance by using the
command setxpcenv('TargetBoot','CDBoot').

3 In the output of the getxpcenv command, verify that CDBootImageLocation
is set to the location of your CD/DVD read/write drive.

Tip If required, update property CDBootImageLocation, for instance by
using the command setxpcenv('TargetBoot','D:\').

4 Type xpcbootdisk.

The xPC Target software displays the following message and creates the
CD/DVD boot ISO image.

Current boot mode: CDBoot

4-37

http://support.microsoft.com/kb/KB932716

4 Target Application Environment

CD boot image is successfully created

Insert an empty CD/DVD. Available drives:
[1] d:\
[0] Cancel Burn

5 Insert the empty CD or DVD in the host computer.

6 Type 1 followed by carriage return.

7 When the write operation has finished, remove the CD or DVD from the
drive.

8 Save the changes to your environment:

tgs=xpctarget.targets;
tgs.save

9 Insert the bootable CD/DVD into your target computer CD/DVD drive and
reboot the target computer.

Continue with “Run Confidence Test on Configuration”.

4-38

Command Line DOS Loader Boot Method

Command Line DOS Loader Boot Method
DOSLoader mode allows you to boot the xPC Target kernel on a target
computer from a fixed or removable device with DOS boot capability, such
as a hard disk or flash memory. After booting the target computer, you can
download your application from the host computer over a serial or network
connection between the host and target computers.

Note To run in DOSLoader mode, the target computer boot device must
provide a minimal DOS environment complying with certain restrictions.
For details, see:

• “Creating a DOS System Disk”

• “DOS Loader Mode Restrictions”

Note

• To run in DOSLoader mode, the target computer boot device must provide a
minimal DOS environment complying with certain restrictions. For details,
see “Creating a DOS System Disk” and “DOS Loader Mode Restrictions”.

• To create a DOSLoader boot disk using MATLAB language, see “Command
Line DOS Loader Boot Method” on page 4-39 (single target computer) or
“Command Line DOS Loader Boot Method: Multiple Target Computers” on
page 4-75 (multiple target computers).

To create DOSLoader files and use them to boot target computer TargetPC1,
use the following procedure:

1 Set TargetBoot to DOS Loader:

setxpcenv('TargetBoot','DOSLoader')

4-39

4 Target Application Environment

2 Set DOSLoaderLocation to the directory where you want to create the
DOSLoader boot files. This location can be a local directory on the host
computer or a removable storage device that you will use to boot the target
computer. By default, the directory is the current working directory.

setxpcenv('DOSLoaderLocation','D:\')

3 Type xpcbootdisk in the MATLAB Command Window.

The xPC Target software displays the following message:

Current boot mode: DOSLoader
xPC Target DOS Loader files are successfully created

This operation creates the following boot files in the specified location:

autoexec.bat
xpcboot.com
*.rtb

4 If you create boot files on a local hard disk, copy these files to a floppy disk,
CD/DVD, or other removable storage media.

5 Transfer the boot files to your target computer or insert the removable
media containing the boot files into the target computer drive or USB port.

6 Verify that autoexec.bat file is on the DOS boot path (typically the root
directory).

7 Select the required boot device in the BIOS of the target computer.

8 Boot the target computer.

When the target computer boots, it loads DOS, which executes the
autoexec.bat file. This file starts the xPC Target kernel (*.rtb). The target
computer then awaits commands from the host computer.

4-40

Command Line Removable Disk Boot Method

Command Line Removable Disk Boot Method
After you have configured the target computer environment parameters, you
can use a target boot floppy disk, removable drive, or USB flash drive to load
and run the xPC Target kernel. This topic describes using the MATLAB
command line to create a removable boot disk for a single target computer
system.

Tip

• If you are creating a removable boot disk from a USB flash drive, you must
create a bootable partition on the drive before performing this procedure.
See “Creating a Bootable Partition”.

• To create a removable boot disk for a multiple target computer system
using MATLAB language, see “Command Line Removable Disk Boot
Method: Multiple Target Computers” on page 4-77.

To create a removable boot drive for the default target computer:

1 In the MATLAB window, type getxpcenv.

2 In the output of the getxpcenv command, verify that property TargetBoot
is BootFloppy.

Tip If required, update property TargetBoot, for instance by using the
command setxpcenv('TargetBoot','BootFloppy').

3 In the output of the getxpcenv command, verify that BootFloppyLocation
is set to the location of your removable drive or USB drive.

Tip If required, update property CDBootImageLocation, for instance by
using the command setxpcenv('TargetBoot','G:\').

4-41

4 Target Application Environment

4 If you are creating a removable boot disk from a USB drive, insert the USB
drive in the host computer USB port and wait for it to be recognized.

5 Type xpcbootdisk.

The xPC Target software displays the following message and creates the
CD/DVD boot ISO image.

Current boot mode: BootFloppy
Insert a formatted floppy disk into your host PC's
disk drive and press a key to continue

6 If required, insert an empty removable disk in the host computer drive and
then press any key.

7 When the write operation has finished, remove the removable disk from
the drive or USB port.

8 Insert the removable boot disk into your target computer drive or USB
port and reboot the target computer.

Continue with “Run Confidence Test on Configuration”.

4-42

Command Line Setup for Multiple Target Computer Systems

Command Line Setup for Multiple Target Computer
Systems

Use the following procedures to set up the software and hardware
configuration for multiple-target computer systems.

Tip This procedure assumes that you installed and configured a C compiler
as part of xPC Target installation. If not, see “Command Line C Compiler
Configuration” on page 4-10.

1 “Command Line Network Communication Setup: Multiple Target
Computers” on page 4-44

2 “Command Line Serial Communication Setup: Multiple Target Computers”
on page 4-66

3 “Command Line Target Boot Methods: Multiple Target Computers” on
page 4-70

Continue with “Run Confidence Test on Configuration”.

4-43

4 Target Application Environment

Command Line Network Communication Setup: Multiple
Target Computers

On the host computer, set the properties that your host and target computers
require for network communication with multiple target computers. For
serial communication, see “Command Line Serial Communication Setup:
Multiple Target Computers” on page 4-66.

• “Command Line PCI Bus Ethernet Setup: Multiple Target Computers”
on page 4-45

• “Command Line USB-to-Ethernet Setup: Multiple Target Computers”
on page 4-51

• “Command Line ISA Bus Ethernet Setup: Multiple Target Computers”
on page 4-57

Continue with “Command Line Target Boot Methods: Multiple Target
Computers” on page 4-70.

4-44

Command Line PCI Bus Ethernet Setup: Multiple Target Computers

Command Line PCI Bus Ethernet Setup: Multiple Target
Computers

If your target computer has a PCI bus, use an Ethernet card for the PCI bus.
The PCI bus has a faster data transfer rate than the other bus types.

Follow these procedures:

1 “PCI Bus Ethernet Hardware” on page 4-46

2 “Command Line PCI Bus Ethernet Settings: Multiple Target Computers”
on page 4-48

Continue with “Command Line Target Boot Methods: Multiple Target
Computers” on page 4-70.

4-45

4 Target Application Environment

PCI Bus Ethernet Hardware
To install the PCI bus Ethernet card:

1 Acquire a supported PCI bus Ethernet card.

For the most current network communications requirements,
see http://www.mathworks.com/products/xpctarget/-
supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf.

Note To boot the target computer from the network, you must install on
the target computer an Ethernet adapter card compatible with the Preboot
eXecution Environment (PXE) specification.

2 Turn off your target computer.

3 If the target computer already has an unsupported Ethernet card, remove
the card.

4 Plug the supported Ethernet card into a free PCI bus slot.

5 Assign a static IP address to the target computer Ethernet card.

Note Although the target computer Ethernet card must have a static IP
address, the host computer network adapter card can have a Dynamic Host
Configuration Protocol (DHCP) address and can be any computer on the
network. When using the product with TCP/IP, you must configure the
DHCP server to reserve all static IP addresses to prevent these addresses
from being assigned to other systems.

6 Connect your target computer Ethernet card to your LAN using an
unshielded twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with
RJ45 connectors. Both computers must have static IP addresses. If the

4-46

http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf
http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf

PCI Bus Ethernet Hardware

host computer has a second network adapter card, that card can have a
DHCP address.

Continue with “Command Line PCI Bus Ethernet Settings: Multiple Target
Computers” on page 4-48.

4-47

4 Target Application Environment

Command Line PCI Bus Ethernet Settings: Multiple Target
Computers

After you install the PCI bus Ethernet card, specify the environment
properties for the host and target computers.

Note You must specify these properties before you can build and download
a target application.

Enter settings for target TargetPC1:

1 At the MATLAB prompt, get the list of targets and make target TargetPC1
the default target.

tgs=xpctarget.targets;
tgs.makeDefault('TargetPC1');

2 Get the environment object for this target computer. All other settings
will be made to this object.

env=tgs.Item('TargetPC1');

3 Set the host-target communication type to 'TcpIp':

env.HostTargetComm='TcpIp';

4 Set the IP address for your target computer (for example '10.10.10.15'):

env.TcpIpTargetAddress = '10.10.10.15';

Ask your system administrator for this value.

5 Set the subnet mask address of your LAN (for example '255.255.255.0'):

env.TcpIpSubNetMask = '255.255.255.0';

Ask your system administrator for this value.

6 Set the TCP/IP port (optional) to any value higher than '20000' and less
than '65536'.

4-48

Command Line PCI Bus Ethernet Settings: Multiple Target Computers

env.TcpIpTargetPort = '22222';

This property is set by default to '22222', a value higher than the reserved
area (telnet, ftp, and so on).

Ask your system administrator for this value.

7 Set the TCP/IP gateway (optional) to the gateway required to access the
target computer, if any.

env.TcpIpGateway = '255.255.255.255';

This property is set by default to '255.255.255.255', which means that
you do not use a gateway to connect to your target computer.

If you communicate with the target computer from within your LAN, you
might not need to change this setting. If you communicate from a host
computer located in a LAN different from your target computer (especially
via the Internet), you must define a gateway and enter its IP address in
this box.

Ask your system administrator for the IP address of the required gateway.

Tip If you connect your computers with a crossover cable, leave this
property as '255.255.255.255'.

8 Set the bus type to 'PCI'.

env.TcpIpTargetBusType = 'PCI');

9 Set the target driver to one of '3C90x', `I8254x', 'I82559', 'NS83815',
'R8139', 'R8168', `Rhine', 'RTLANCE', or `Auto' (the default).

env.TcpIpTargetDriver = 'Auto';

4-49

4 Target Application Environment

Tip

• For target driver `Auto', the software determines the target computer
TCP/IP driver from the card installed on the target computer.

• To configure the software for a crossover Ethernet cable connection,
use 'I82559'.

• If no supported Ethernet card is installed in your target computer, the
software returns an error.

10 If the target computer has multiple Ethernet cards, follow the procedure in
“Ethernet Card Selection by EthernetIndex: Multiple Target Computers”
on page 4-63.

11 Save the changes to your environment:

tgs.save

12 Repeat these steps for any target computer for which you have a PCI bus
Ethernet connection between the host computer and target computer.

Continue with “Command Line Target Boot Methods: Multiple Target
Computers” on page 4-70.

4-50

Command Line USB-to-Ethernet Setup: Multiple Target Computers

Command Line USB-to-Ethernet Setup: Multiple Target
Computers

If the target computer has a USB 2.0 port but no PCI or ISA Ethernet card,
use a USB-to-Ethernet adapter.

Follow these procedures:

1 “USB-to-Ethernet Hardware” on page 4-52

2 “Command Line USB-to-Ethernet Settings: Multiple Target Computers”
on page 4-54

Continue with “Command Line Target Boot Methods: Multiple Target
Computers” on page 4-70.

4-51

4 Target Application Environment

USB-to-Ethernet Hardware
To install the USB-to-Ethernet adapter:

1 Acquire a supported USB-to-Ethernet adapter.

For the most current network communications requirements,
see http://www.mathworks.com/products/xpctarget/-
supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf.

Note To boot the target computer from the network, you must install
on the target computer a USB-to-Ethernet adapter compatible with the
Preboot eXecution Environment (PXE) specification.

2 Turn off your target computer.

3 Plug an Ethernet-to-USB adapter into the USB port on the target.

4 Connect the Ethernet-to-USB adapter to your LAN using an unshielded
twisted-pair (UTP) cable.

5 Assign a static IP address to the target computer USB-to-Ethernet adapter.

Note Although the target computer Ethernet card must have a static IP
address, the host computer network adapter card can have a Dynamic Host
Configuration Protocol (DHCP) address and can be any computer on the
network. When using the product with TCP/IP, you must configure the
DHCP server to reserve all static IP addresses to prevent these addresses
from being assigned to other systems.

6 Connect your target computer Ethernet card to your LAN using an
unshielded twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with
RJ45 connectors. Both computers must have static IP addresses. If the

4-52

http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf
http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf

USB-to-Ethernet Hardware

host computer has a second network adapter card, that card can have a
DHCP address.

Note Do not connect the host computer to the target computer using a
USB cable. As seen from the host computer, a USB-to-Ethernet adapter
plugged into the target computer USB port is an Ethernet card on the
target computer.

Continue with “Command Line USB-to-Ethernet Settings: Multiple Target
Computers” on page 4-54.

4-53

4 Target Application Environment

Command Line USB-to-Ethernet Settings: Multiple Target
Computers

After you have installed the USB-to-Ethernet adapter, specify the
environment properties for the host and target computers.

Note You must specify these properties before you can build and download
a target application.

Enter settings for target TargetPC1:

1 At the MATLAB prompt, get the list of targets and make target TargetPC1
the default target.

tgs=xpctarget.targets;
tgs.makeDefault('TargetPC1');

2 Get the environment object for this target computer. All other settings
will be made to this object.

env=tgs.Item('TargetPC1');

3 Set the host-target communication type to 'TcpIp':

env.HostTargetComm='TcpIp';

4 Set the IP address for your target computer (for example '10.10.10.15'):

env.TcpIpTargetAddress = '10.10.10.15';

Ask your system administrator for this value.

5 Set the subnet mask address of your LAN (for example '255.255.255.0'):

env.TcpIpSubNetMask = '255.255.255.0';

Ask your system administrator for this value.

6 Set the TCP/IP port (optional) to any value higher than '20000' and less
than '65536'.

4-54

Command Line USB-to-Ethernet Settings: Multiple Target Computers

env.TcpIpTargetPort = '22222';

This property is set by default to '22222', a value higher than the reserved
area (telnet, ftp, and so on).

Ask your system administrator for this value.

7 Set the TCP/IP gateway (optional) to the gateway required to access the
target computer, if any.

env.TcpIpGateway = '255.255.255.255';

This property is set by default to '255.255.255.255', which means that
you do not use a gateway to connect to your target computer.

If you communicate with the target computer from within your LAN, you
might not need to change this setting. If you communicate from a host
computer located in a LAN different from your target computer (especially
via the Internet), you must define a gateway and enter its IP address in
this box.

Ask your system administrator for the IP address of the required gateway.

Tip If you connect your computers with a crossover cable, leave this
property as '255.255.255.255'.

8 Set the bus type to 'USB'.

env.TcpIpTargetBusType = 'USB';

9 Set the target driver to one of `USBAX772', `USBAX172', or `Auto'.

env.TcpIpTargetDriver = 'Auto';

Note If the target driver is `Auto', the software will default the driver
to `USBAX772', the driver most commonly used.

10 Save the changes to your environment:

4-55

4 Target Application Environment

tgs.save

11 Repeat these steps for any target computer for which you have a USB bus
Ethernet connection between the host computer and target computer.

Continue with “Command Line Target Boot Methods: Multiple Target
Computers” on page 4-70.

4-56

Command Line ISA Bus Ethernet Setup: Multiple Target Computers

Command Line ISA Bus Ethernet Setup: Multiple Target
Computers

Your target computer might not have an available PCI bus slot or USB 2.0
port. In these cases, use an Ethernet card for an ISA bus.

1 “ISA Bus Ethernet Hardware” on page 4-58

2 “Command Line ISA Bus Ethernet Settings: Multiple Target Computers”
on page 4-60

Continue with “Command Line Target Boot Methods: Multiple Target
Computers” on page 4-70.

4-57

4 Target Application Environment

ISA Bus Ethernet Hardware
To install an ISA bus Ethernet card:

1 Acquire a supported ISA bus Ethernet card.

For the most current network communications requirements,
see http://www.mathworks.com/products/xpctarget/-
supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf.

Note To boot the target computer from the network, you must install on
the target computer an Ethernet adapter card compatible with the Preboot
eXecution Environment (PXE) specification.

2 Turn off your target computer.

3 On your ISA bus card, assign an IRQ and I/O-port base address by moving
the jumpers or switches on the card. Write down these settings, because
you must enter them in xPC Target Explorer.

Set the IRQ line to 5 and the I/O-port base address to around 0x300. If one
of these hardware settings would lead to a conflict in your target computer,
select another IRQ or I/O-port base address.

If your ISA bus card does not contain jumpers to set the IRQ line and the
base address, after installation use the utility on the installation disk
supplied with your card to manually assign the IRQ line and base address.

If you use an Ethernet card for an ISA bus within a target computer that
has a PCI bus, after installation you must reserve the chosen IRQ line
number for the Ethernet card in the PCI BIOS. Refer to your BIOS setup
documentation to set up the PCI BIOS.

Note Do not configure the card as a PnP-ISA device.

4-58

http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf
http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf

ISA Bus Ethernet Hardware

4 If the target computer already has an unsupported Ethernet card, remove
the card. Plug the compatible network card into a free ISA bus slot.

5 Assign a static IP address to the target computer Ethernet card.

Note Although the target computer Ethernet card must have a static IP
address, the host computer network adapter card can have a Dynamic Host
Configuration Protocol (DHCP) address and can be any computer on the
network. When using the product with TCP/IP, you must configure the
DHCP server to reserve all static IP addresses to prevent these addresses
from being assigned to other systems.

6 Connect your target computer Ethernet card to your LAN using an
unshielded twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with
RJ45 connectors. Both computers must have static IP addresses. If the
host computer has a second network adapter card, that card can have a
DHCP address.

Continue with “Command Line ISA Bus Ethernet Settings: Multiple Target
Computers” on page 4-60.

4-59

4 Target Application Environment

Command Line ISA Bus Ethernet Settings: Multiple Target
Computers

After you have installed the ISA bus Ethernet card, specify the environment
properties for the host and target computers.

Note You must specify these properties before you can build and download
a target application.

1 At the MATLAB prompt, get the list of targets and make target TargetPC1
the default target.

tgs=xpctarget.targets;
tgs.makeDefault('TargetPC1');

2 Get the environment object for this target computer. All other settings
will be made to this object.

env=tgs.Item('TargetPC1');

3 Set the host-target communication type to 'TcpIp':

env.HostTargetComm='TcpIp';

4 Set the IP address for your target computer (for example '10.10.10.15'):

env.TcpIpTargetAddress = '10.10.10.15';

Ask your system administrator for this value.

5 Set the subnet mask address of your LAN (for example '255.255.255.0'):

env.TcpIpSubNetMask = '255.255.255.0';

Ask your system administrator for this value.

6 Set the TCP/IP port (optional) to any value higher than '20000' and less
than '65536'.

env.TcpIpTargetPort = '22222';

4-60

Command Line ISA Bus Ethernet Settings: Multiple Target Computers

This property is set by default to '22222', a value higher than the reserved
area (telnet, ftp, and so on).

Ask your system administrator for this value.

7 Set the TCP/IP gateway (optional) to the gateway required to access the
target computer, if any.

env.TcpIpGateway = '255.255.255.255';

This property is set by default to '255.255.255.255', which means that
you do not use a gateway to connect to your target computer.

If you communicate with the target computer from within your LAN, you
might not need to change this setting. If you communicate from a host
computer located in a LAN different from your target computer (especially
via the Internet), you must define a gateway and enter its IP address in
this box.

Ask your system administrator for the IP address of the required gateway.

Tip If you connect your computers with a crossover cable, leave this
property as '255.255.255.255'.

8 Set the bus type to 'ISA'.

env.TcpIpTargetBusType = 'ISA';

9 Set the target driver to one of `NE2000' or `SMC91C9X'. For example:

env.TcpIpTargetDriver = 'NE2000';

Note Target driver `Auto' is not supported for bus type 'ISA'.

10 Set the I/O-port base address and IRQ to values that correspond with the
jumper settings or ROM settings on your ISA bus Ethernet card. For
example:

4-61

4 Target Application Environment

env.TcpIpTargetISAMemPort = '0x300';
env.TcpIpTargetISAIRQ = '5';

11 Save the changes to your environment:

tgs.save;

12 Repeat these steps for any target computer for which you have an ISA bus
Ethernet connection between the host computer and target computer.

Continue with “Command Line Target Boot Methods: Multiple Target
Computers” on page 4-70.

4-62

Ethernet Card Selection by EthernetIndex: Multiple Target Computers

Ethernet Card Selection by EthernetIndex: Multiple Target
Computers

If you are using multiple target computers that have multiple Ethernet cards,
you might need to specify which one to use for host-target communication.
Use the following procedure to discover the Ethernet index of all cards on a
specific target and specify which card to use.

Note This procedure assumes you intend to use Network boot mode for
routine target operations. To use this mode, you must install on the target
computer an Ethernet adapter card compatible with the Preboot eXecution
Environment (PXE) specification.

If you are configuring PCTarget2:

1 At the MATLAB prompt, type:

allTargets = xpctarget.targets;
myTargetEnv = allTargets.Item('PCTarget2');
set(myTargetEnv, 'ShowHardware', 'on');

2 Type xpcexplr in the MATLAB Command Window.

3 In the Targets pane, expand the target computer node.

4 Click the Target Properties icon in the toolbar or double-click
Properties.

5 Select Target settings and clear the check box Graphics mode. This
causes the kernel to run in text mode.

6 Select Boot configuration and set Boot mode to CD or Removable Disk.

Note You can also set Boot mode to Network. However, to connect the
network cables you need to know in advance which Ethernet card the
target computer boots from.

4-63

4 Target Application Environment

7 Click Create boot disk and follow the prompts to create a new boot disk

8 Insert the new boot disk and reboot the target computer from the computer
boot switch.

After the boot is complete, the target monitor displays a list that looks
like this:

index: 0, driver: RTLANCE, Bus: 16, Slot: 7, Func: 0
index: 1, driver: R8139, Bus: 16, Slot: 8, Func: 0
index: 2, driver: I82559, Bus: 16, Slot: 9, Func: 0

Note

• You might need to change the boot order from the target computer BIOS
to allow booting from your disk.

• When ShowHardware is set, the host computer cannot communicate with
the target computer after the kernel boots.

9 Make a note of the index of the Ethernet card you want to use for
host-target communication, for example 2.

10 At the MATLAB prompt, type:

setxpcenv('ShowHardware', 'off');

11 At the MATLAB prompt, type:

setxpcenv('EthernetIndex', '#');

where # indicates the index of the Ethernet card, here index 2.

12 Select Target settings and select the check box Graphics mode.

13 Set Boot mode to Network.

14 Click Create boot disk.

15 Remove the boot disk from the target computer drive and boot the target
computer from the computer boot switch.

4-64

Ethernet Card Selection by EthernetIndex: Multiple Target Computers

The kernel selects the specified Ethernet card as the target computer card,
instead of the default card with index number 0.

4-65

4 Target Application Environment

Command Line Serial Communication Setup: Multiple
Target Computers

On the host computer, set the properties that your host and target computers
require for serial communication with a single target computer. For network
communication, see “Network Communication Setup”.

tgs=xpctarget.targets
tgs.makeDefault('TargetPC1')
env=tgs.Item('TargetPC1')

env.HostTargetComm='RS232'

Note RS-232 Host-Target communication mode will be removed in a future
release. Use TCP/IP instead.

• “RS-232 Hardware” on page 4-67

• “Command Line RS-232 Settings: Multiple Target Computers” on page 4-68

Continue with “Command Line Target Boot Methods: Multiple Target
Computers” on page 4-70.

4-66

RS-232 Hardware

RS-232 Hardware
Before you can use serial communication for host-target communication, you
must install the following RS-232 hardware:

1 Acquire a null modem cable:

6
7
8
9

9
8
7
6

1
2
3
4
5

5
4
3
2
1

DB9 Female DB9 Female

2 Connect the host and target computers with the null modem cable, using
either the COM1 or COM2 port.

Make a note of which port is in use on the host computer. You will need to
record the host computer port in the environment property settings.

Continue with “Command Line RS-232 Settings: Multiple Target Computers”
on page 4-68.

4-67

4 Target Application Environment

Command Line RS-232 Settings: Multiple Target Computers
After you have installed the serial communication hardware, specify the
environment properties for the host and target computers.

Note

• You must specify these properties before you can build and download
a target application.

• Do not use host scopes and a scope viewer on the host computer to acquire
and display large blocks of data. The slowness of the RS-232 connection
causes large delays for large blocks of data.

• Boot mode type `NetworkBoot' is not supported when serial communication
is used.

1 At the MATLAB prompt, get the list of targets and make target TargetPC1
the default target.

tgs=xpctarget.targets;
tgs.makeDefault('TargetPC1');

2 Get the environment object for this target computer. All other settings
will be made to this object.

env=tgs.Item('TargetPC1');

3 At the MATLAB prompt, set the host-target communication type to
'RS232':

env.HostTargetComm = 'RS232';

4 For host port, select one of `COM1' or `COM2'. For example:

env.RS232HostPort = 'COM1';

The default is `COM1'. xPC Target selects the target computer port
automatically.

4-68

Command Line RS-232 Settings: Multiple Target Computers

5 Select a baud rate as high as possible. For example:

env.RS232Baudrate = '115200';

The default is 115200.

Note A baud rate less than 38400 can cause communication failures.

6 Save the changes to your environment:

tgs.save;

7 Repeat this procedure for any target computer for which you have a serial
connection between the host computer and target computer.

Continue with “Command Line Target Boot Methods: Multiple Target
Computers” on page 4-70.

4-69

4 Target Application Environment

Command Line Target Boot Methods: Multiple Target
Computers

Choose a boot method that your host and target computers support:

4-70

Command Line Network Boot Method: Multiple Target Computers

Command Line Network Boot Method: Multiple Target
Computers

If you boot target computers on a dedicated network, you do not need a boot
disk or removable boot drive. You do need to set up the host computer and
target computer. Before you start using the command-line interface to perform
this operation, see “Network Boot Method”. On 64-bit MATLAB systems,
instead of using xPC Target Explorer, use the command-line interface:

1 In the MATLAB Command Window, type:

tgs=xpctarget.targets
tgs.makeDefault('TargetPC1')
env=tgs.Item('TargetPC1')

2 Verify the following property setting:

Property Value

TargetBoot NetworkBoot

3 Update values as required. For example:

env.TargetBoot='NetworkBoot'

4 Set a TCP/IP address. Verify that the subnet of this IP address is the same as
the host computer. Otherwise your network boot will fail. For example, type:

env.TcpIpTargetAddress='10.10.10.11'

5 Set the target computer MAC address (in hexadecimal).

env.TargetMACAddress='01:23:45:67:89:ab'

6 In the MATLAB Command Window, type:

xpcnetboot

The following message appears:

Current boot mode: NetworkBoot

4-71

4 Target Application Environment

The software creates and starts a network boot server process on the host
computer. You will boot the target computer using this process.

A minimized icon () representing the network boot server process appears
on the bottom right of the host computer system tray.

4-72

Command Line CD Boot Method: Multiple Target Computers

Command Line CD Boot Method: Multiple Target
Computers

After you have configured the target computer environment parameters, you
can use a target boot CD or DVD to load and run the xPC Target kernel.
This topic describes using the MATLAB command line to create a boot CD or
DVD for a single target computer system. To use this capability, your host
computer must run under one of the following Windows systems:

• Microsoft Windows 7

• Microsoft Windows Vista

• Microsoft Windows XP Service Pack 2 or 3 with Image Mastering API v2.0
(IMAPIv2.0), available at http://support.microsoft.com/kb/KB932716.

To create a boot CD/DVD for target computer TargetPC1:

1 In the MATLAB window, type

tgs=xpctarget.targets
tgs.makeDefault('TargetPC1')
env=tgs.Item('TargetPC1')

2 In the output of the Item command, verify that property TargetBoot is
CDBoot.

Tip If required, update property TargetBoot, for instance by using the
command env.TargetBoot='CDBoot'.

3 Type env.get('CDBootImageLocation').

4 In the output of the env.get command, verify that CDBootImageLocation
is set to the location of your CD/DVD read/write drive.

Tip If required, update property CDBootImageLocation, for instance by
using the command env.CDBootImageLocation='D:\'.

4-73

http://support.microsoft.com/kb/KB932716

4 Target Application Environment

5 Type xpcbootdisk.

The xPC Target software displays the following message and creates the
CD/DVD boot ISO image.

Current boot mode: CDBoot
CD boot image is successfully created

Insert an empty CD/DVD. Available drives:
[1] d:\
[0] Cancel Burn

6 Insert the empty CD or DVD in the host computer.

7 Type 1 followed by carriage return.

8 When the write operation has finished, remove the CD or DVD from the
drive.

9 Insert the bootable CD/DVD into your target computer CD/DVD drive and
reboot the target computer.

Continue with “Run Confidence Test on Configuration”.

4-74

Command Line DOS Loader Boot Method: Multiple Target Computers

Command Line DOS Loader Boot Method: Multiple Target
Computers

DOSLoader mode allows you to boot the xPC Target kernel on a target
computer from a fixed or removable device with DOS boot capability, such
as a hard disk or flash memory. After booting the target computer, you can
download your application from the host computer over a serial or network
connection between the host and target computers.

Note To run in DOSLoader mode, the target computer boot device must
provide a minimal DOS environment complying with certain restrictions.
For details, see:

• “Creating a DOS System Disk”

• “DOS Loader Mode Restrictions”

To create DOSLoader files and use them to boot target computer TargetPC1,
use the following procedure:

1 For a specific target computer, retrieve the specific target computer
environment object:

tgs = xpctarget.targets;
tgEnv = tgs.Item('TargetPC1');

2 Set TargetBoot to DOS Loader:

set(tgEnv, 'TargetBoot', `DOSLoader');

3 Set DOSLoaderLocation to the directory where you want to create the
DOSLoader boot files. This location can be a local directory on the host
computer or a removable storage device that you will use to boot the target
computer. By default, the directory is the current working directory.

set(tgEnv, 'DOSLoaderLocation', 'D:\');

4 Type xpcbootdisk in the MATLAB Command Window.

4-75

4 Target Application Environment

The xPC Target software displays the following message:

Current boot mode: DOSLoader
xPC Target DOS Loader files are successfully created

This operation creates the following boot files in the specified location:

autoexec.bat
xpcboot.com
*.rtb

5 If you create boot files on a local hard disk, copy these files to a floppy disk,
CD/DVD, or other removable storage media.

6 Transfer the boot files to your target computer or insert the removable
media containing the boot files into the target computer drive or USB port.

7 Verify that autoexec.bat file is on the DOS boot path (typically the root
directory).

8 Select the required boot device in the BIOS of the target computer.

9 Boot the target computer.

When the target computer boots, it loads DOS, which executes the
autoexec.bat file. This file starts the xPC Target kernel (*.rtb). The target
computer then awaits commands from the host computer.

4-76

Command Line Removable Disk Boot Method: Multiple Target Computers

Command Line Removable Disk Boot Method: Multiple
Target Computers

After you have configured the target computer environment parameters, you
can use a target boot floppy disk, removable drive, or USB flash drive to load
and run the xPC Target kernel. This topic describes using the MATLAB
command line to create a removable boot disk.

Tip If you are creating a removable boot drive from a USB flash drive,
you must create a bootable partition on the drive before performing this
procedure. See “Creating a Bootable Partition”.

To create a removable boot drive for target computer TargetPC1:

1 In the MATLAB window, type:

tgs=xpctarget.targets
tgs.makeDefault('TargetPC1')
env=tgs.Item('TargetPC1')

2 In the output of the Item command, verify that property TargetBoot is
BootFloppy.

Tip If required, update property TargetBoot, for instance by using the
command env.TargetBoot='BootFloppy'.

3 Type env.get('BootFloppyLocation').

4 In the output of the env.get command, verify that BootFloppyLocation is
set to the location of your removable drive or USB drive.

Tip If required, update property BootFloppyLocation, for instance by
using the command env.BootFloppyLocation='G:\'.

4-77

4 Target Application Environment

5 If you are creating a removable boot disk from a USB drive, insert the USB
drive in the host computer USB port and wait for it to be recognized.

6 Type xpcbootdisk.

The xPC Target software displays the following message and creates the
CD/DVD boot ISO image.

Current boot mode: BootFloppy
Insert a formatted floppy disk into your host PC's
disk drive and press a key to continue

7 If required, insert an empty removable disk in the host computer drive and
then press any key.

8 When the write operation has finished, remove the removable disk from
the drive or USB port.

9 Insert the removable boot disk into your target computer drive or USB
port and reboot the target computer.

Continue with “Run Confidence Test on Configuration”.

4-78

5

Signals and Parameters

Changing parameters in your target application while it is running in
real time, viewing the resulting signal data, and checking the results, are
important prototyping tasks. The xPC Target software includes command-line
and graphical user interfaces to complete these tasks. This documentation
includes the following topics:

• “Signal Monitoring Basics” on page 5-4

• “Monitor Signals with xPC Target Explorer” on page 5-5

• “Monitor Signals with MATLAB Language” on page 5-9

• “Configure for Monitoring Stateflow States” on page 5-11

• “Monitor Stateflow States with xPC Target Explorer” on page 5-14

• “Monitor Stateflow States with MATLAB Language” on page 5-17

• “Animate Stateflow Charts with Simulink External Mode” on page 5-18

• “Signal Tracing Basics” on page 5-20

• “Trace Signals with Target Scope (xPC) Blocks” on page 5-21

• “xPC Target Scope Usage” on page 5-27

• “Target Scope Usage” on page 5-28

• “Trace Signals with Host Scope (xPC) Blocks” on page 5-29

• “Host Scope Usage” on page 5-32

• “Trace Signals with Target Scopes Using xPC Target Explorer” on page 5-33

• “Configure Scope Sampling Using xPC Target Explorer” on page 5-40

• “Configure Interactive Scope Triggering Using xPC Target Explorer” on
page 5-44

5 Signals and Parameters

• “Configure Noninteractive Scope Triggering Using xPC Target Explorer”
on page 5-48

• “Configure Target Scope Display Using xPC Target Explorer” on page 5-54

• “Create Signal Groups Using xPC Target Explorer” on page 5-58

• “Trace Signals with Host Scopes Using xPC Target Explorer” on page 5-62

• “Configure the Host Scope Viewer” on page 5-68

• “Configure Data Cursor Using xPC Target Explorer” on page 5-70

• “Trace Signals with Target Scopes Using MATLAB Language” on page 5-71

• “Trace Signals with Simulink External Mode” on page 5-75

• “External Mode Usage” on page 5-79

• “Trace Signals with a Web Browser” on page 5-80

• “Signal Logging Basics” on page 5-82

• “Log Signals with File Scope (xPC) Blocks” on page 5-83

• “File Scope Usage” on page 5-88

• “Log Signals with File Scopes Using xPC Target Explorer” on page 5-89

• “Configure File Scopes Using xPC Target Explorer” on page 5-94

• “Log Signal Data into Multiple Files” on page 5-99

• “Log Signals Using Outport with xPC Target Explorer” on page 5-103

• “Log Signals Using Outport with MATLAB Language” on page 5-107

• “Log Signals with File Scopes Using MATLAB Language” on page 5-112

• “Log Signals with a Web Browser” on page 5-117

• “Parameter Tuning Basics” on page 5-118

• “Tune Parameters with xPC Target Explorer” on page 5-119

• “Create Parameter Groups Using xPC Target Explorer” on page 5-124

• “Tune Parameters Using MATLAB Language” on page 5-128

• “Tune Parameters with Simulink External Mode” on page 5-132

• “Tune Parameters with a Web Browser” on page 5-134

5-2

• “Save and Reload Parameters with MATLAB Language” on page 5-135

• “Configure to Tune Inlined Parameters” on page 5-138

• “Tune Inlined Parameters with xPC Target Explorer” on page 5-141

• “Tune Inlined Parameters with MATLAB Language” on page 5-146

• “Nonobservable Signals and Parameters” on page 5-148

5-3

5 Signals and Parameters

Signal Monitoring Basics
Signal monitoring is the process used to acquire real-time signal data without
time information during target application execution. The advantage with
signal monitoring is that there is no additional load on the real-time tasks.
Use signal monitoring to acquire signal data without creating scopes that
run on the target computer.

In addition to signal monitoring, xPC Target enables you to monitor Stateflow
states as test points through the xPC Target Explorer and MATLAB
command-line interfaces. You designate data or a state in a Stateflow
diagram as a test point. This makes it observable during execution. You
can work with Stateflow states as you do with xPC Target signals, such as
monitoring or plotting Stateflow states.

You can monitor signals from referenced models the same way that you do
any other signal, with the exception that you must set the test point for the
signal in the referenced model before you can monitor it. Additionally, the
software ignores signal labels in referenced models.

Note

• xPC Target Explorer works with multidimensional signals in column-major
format.

• Some signals are not observable. See “Nonobservable Signals and
Parameters” on page 5-148.

You can monitor signals using xPC Target Explorer and MATLAB language.
You can monitor Stateflow states using xPC Target Explorer, MATLAB
language, and Simulink External Mode.

5-4

Monitor Signals with xPC Target™ Explorer

Monitor Signals with xPC Target Explorer
This procedure uses the model xpcosc as an example. It assumes you have
done the following setup:

1 Built and downloaded the target application to the target computer using

Simulink (on the toolbar)

2 Run xPC Target Explorer (command xpcexplr)

3 Connected to the target computer in the Targets pane (on the toolbar)

4 Set property Stop time to inf in the Applications pane (on the toolbar)

To monitor a signal:

1 xPC Target Explorer, expand the Model Hierarchy node under the target
application node

2 To view the signals in the target application, select the model node and
click the View Signals icon on the toolbar, or right-click the model name
and click View Signals.

The Signals workspace opens.

Tip If a block name consists only of spaces, xPC Target Explorer does not
display a node for or signals from that block. To reference such a block,
provide an alphanumeric name for that block, rebuild and download the
model to the target computer, and reconnect the MATLAB session to the
target computer.

3 To view the value of a signal, select the Monitor check box for the signal
in the Signals workspace. For instance, select the check boxes for Signal
Generator and Integrator1.

The signal values are shown in theMonitoring Value column.

5-5

5 Signals and Parameters

4 To start execution, click the target application and click the Start icon on
the toolbar, or right-click the target application and click Start.

The application starts running.

5 To stop execution, click the target application and click the Stop icon on
the toolbar, or right-click the target application and click Stop.

The Application Parameters and Signals workspaces look like this:

5-6

Monitor Signals with xPC Target™ Explorer

5-7

5 Signals and Parameters

Tip

• To group signals, see “Create Signal Groups Using xPC Target Explorer”
on page 5-58.

• When you are monitoring a signal group, you can change the output
format of the group by selecting one of the options in the Format column.

• To make both workspaces visible at the same time, click and hold the
tab for one workspace and drag it down until the following icon appears

in the middle of the dialog box: . Continue to drag until the cursor
reaches the required quadrant, then release the mouse button.

5-8

Monitor Signals with MATLAB® Language

Monitor Signals with MATLAB Language
This procedure uses the model xpc_osc3 as an example. It assumes you have
done the following setup:

1 Built and downloaded the target application to the target computer using

Simulink (on the toolbar)

2 Assigned tg to the target computer.

1 To get a list of signals, type either

set(tg, 'ShowSignals', 'on')

or

tg.ShowSignals='on'

The latter command causes the MATLAB window to display a list of the
target object properties for the available signals. For example, the signals
for the model xpc_osc3 are shown below. Note that the Label column is
empty because there are no labelled signals in the model. If your signal
has a unique label, its label is displayed in this column. If the label is not
unique, the command returns an error. If the signal label is in a referenced
model, the software ignores it.

ShowSignals = on
Signals = INDEX VALUE BLOCK NAME LABEL

0 0.000000 Signal Generator
1 0.000000 Transfer Fcn

2 To get the value of a signal, use the getsignal method. In the MATLAB
Command Window, type

tg.getsignal(0)

where 0 is the signal index. the MATLAB interface displays the value
of signal 1.

ans=
3.731

5-9

5 Signals and Parameters

Note The xPC Target software lists referenced model signals with their full
block path. For example, xpc_osc5/childmodel/gain.

See also “Trace Signals with Target Scopes Using MATLAB Language” on
page 5-71.

5-10

Configure for Monitoring Stateflow® States

Configure for Monitoring Stateflow States
This procedure uses the model old_sf_car as an example. It describes one
way to set Stateflow states as test points for monitoring.

1 In the MATLAB window, typeold_sf_car.

2 In the Simulink window, click Simulation > Model Configuration
Parameters.

The Configuration Parameters dialog box is displayed for the model.

3 Click the Code Generation node.

The Code Generation pane opens.

4 To build a basic target application, in the Target selection section, click
the Browse button at the System target file list. Click xpctarget.tlc,
then click OK.

5-11

5 Signals and Parameters

5 In the old_sf_car model, double-click the shift_logic chart.

The shift_logic chart is displayed.

6 In the chart, click Tools > Model Explorer.

The Model Explorer is displayed.

7 Expand old_sf_car, then shift_logic.

8 Expand gear_state, then select first.

9 Select the Test point check box in the State first pane Logging tab. This
creates a test point for the first state.

5-12

Configure for Monitoring Stateflow® States

10 Click Apply.

11 Build and download the old_sf_car target application to the target
computer.

12 View Stateflow states using one of:

• “Monitor Stateflow States with xPC Target Explorer” on page 5-14

• “Monitor Stateflow States with MATLAB Language” on page 5-17

• “Animate Stateflow Charts with Simulink External Mode” on page 5-18

You can now view the states with xPC Target Explorer or the MATLAB
interface.

5-13

5 Signals and Parameters

Monitor Stateflow States with xPC Target Explorer
This topic assumes that you have already and built and downloaded the
application.

This procedure uses the model old_sf_car as an example. It assumes you
have done the following setup:

1 Set Stateflow states as test points

2 Built and downloaded the target application to the target computer using

Simulink (on the toolbar)

3 Run xPC Target Explorer (command xpcexplr)

4 Connected to the target computer in the Targets pane (on the toolbar)

To monitor a test point:

1 Expand the target application and the Model Hierarchy node in the
Applications pane.

2 To view the test point, select shift_logic and click the View Signals
icon on the toolbar, or right-click shift_logic and click View Signals.

The Signals workspace opens. The test point gear_state.first appears
like any other signal in the Signals workspace.

3 Select the Monitor check box for gear_state.first in the Signals
workspace. The value of the signal is shown in the Monitoring Value
column.

The Signals workspace looks like this:

5-14

Monitor Stateflow® States with xPC Target™ Explorer

5-15

5 Signals and Parameters

Tip

• To group signals, see “Create Signal Groups Using xPC Target Explorer”
on page 5-58.

• When you are monitoring a signal group, you can change the output
format of the group by selecting one of the options in the Format column.

4 To start execution, right click the target application and click Start, or
click the Start icon on the toolbar.

The application starts running.

5 To stop execution, click the target application and click Stop, or click the
Stop icon on the toolbar.

5-16

Monitor Stateflow® States with MATLAB® Language

Monitor Stateflow States with MATLAB Language
This topic assumes that you have already set Stateflow states as test points
(see “Configure for Monitoring Stateflow States” on page 5-11 if you have not).

1 To get a list of signals in the MATLAB Command Window, type

tg=xpc

2 To display the signals in the target application, type either

set(tg, 'ShowSignals', 'on'); tg

or

tg.ShowSignals='on'

The latter causes the MATLAB window to display a list of the target object
properties for the available signals.

For Stateflow states that you have set as test points, the state appears
in the BLOCK NAME column like any signal. For example, if you set a test
point for the first state of gear_state in the shift_logic chart of the
old_sf_car model, the state of interest is first. This state appears as
follows in the list of signals in the MATLAB interface:

shift_logic:gear_state.first

shift_logic is the path to the Stateflow chart and gear_state.first is
the path to the specific state.

5-17

5 Signals and Parameters

Animate Stateflow Charts with Simulink External Mode
The xPC Target software supports the animation of Stateflow charts in your
model to provide visual verification that your chart behaves as expected.

This topic assumes that you are familiar with the use of Stateflow animation.
For more information on Stateflow animation, see “Animate Stateflow Charts”
in the Stateflow documentation.

1 In the Simulink Editor window, select Simulation > Mode > External.

2 Select Code > External Mode Control Panel.

3 Select Signal & Triggering

The External Signal & Triggering window for the model is displayed.

4 In the Trigger section of the External Signal & Triggering window:

• Set Mode to normal.

• In the Duration box, enter 5.

• Select the Arm when connecting to target check box.

5 Click Apply.

6 Select Simulation > Model Configuration Parameters.

7 Navigate to the xPC Target options node.

8 Select the Enable Stateflow animation check box.

9 Click Apply.

10 Build and download the model to the target computer.

11 Click the Connect To Target icon on the toolbar, or select
Simulation > Connect to Target.

12 To start the simulation, click the Run icon on the toolbar, or click
Simulation > Run.

5-18

Animate Stateflow® Charts with Simulink® External Mode

The simulation begins to run. You can observe the animation by opening
the Stateflow Editor for your model.

13 To stop the simulation, click the Stop icon on the toolbar, or click
Simulation > Stop.

Note Enabling the animation of Stateflow charts also displays additional
Stateflow information. The Stateflow software requires this information to
animate charts. You can disregard this information.

5-19

5 Signals and Parameters

Signal Tracing Basics
Signal tracing is the process of acquiring signal and time data from a target
application. You can then visualize the data on the target computer or upload
the data and visualize it on the host computer while the target application is
running.

Signal tracing differs from signal monitoring and from signal logging. With
signal monitoring, you can only look at signal values, not signal times. With
signal logging, you can only look at signals after a run is finished and the log
of the entire run is available.

Note

• xPC Target Explorer works with multidimensional signals in column-major
format.

• Some signals are not observable. See “Nonobservable Signals and
Parameters” on page 5-148.

You can trace signals using target and host scopes in the model, virtual target
and host scopes in xPC Target Explorer, Simulink External Mode, MATLAB
language, and a web browser.

5-20

Trace Signals with Target Scope (xPC) Blocks

Trace Signals with Target Scope (xPC) Blocks
xPC Target includes a specialized Scope (xPC) block that you can configure to
display signal and time data on the target computer monitor. To do this, add
a Scope (xPC) block to the model, select Scope type Target and configure the
other parameters as described in the following procedure.

Note

• Do not confuse xPC Target Scope blocks with standard Simulink Scope
blocks.

• For more on using xPC Target Scope blocks, see “xPC Target Scope Usage”
on page 5-27.

• For more on using target scopes, see “Target Scope Usage” on page 5-28.

This procedure uses the model my_xpc_osc2 as an example.

1 In the MATLAB window, type my_xpc_osc2.

The Simulink block diagram opens for the model my_xpc_osc2.

2 Double-click the block labeled Scope (xPC).

The Block Parameters: Scope (xPC) dialog box opens. By default, the
target scope dialog is displayed.

3 In the Scope number box, a unique number to identify the scope is
displayed. This number is incremented each time you add a new xPC
Target Scope block. Normally, you do not edit this value.

This number identifies the xPC Target Scope block and the scope screen on
the host or target computers.

4 From the Scope type list, select Target if it is not already selected. The
updated dialog box is displayed.

5-21

5 Signals and Parameters

5 Select the Start scope when application starts check box to start a
scope when the target application is downloaded and started. The scope
window opens automatically.

Note This setting is a convenience for most boot modes. It is mandatory
in Stand Alone mode because the host computer is not available to issue
a command to start scopes.

6 From the Scope mode list, select Numerical, Graphical redraw,
Graphical sliding, or Graphical rolling.

If you have a scope type of Target and a scope mode of Numerical, the
scope block dialog adds a Numerical format box to the dialog. You can
define the display format for the data. If you choose not to complete the
Numerical format box, the xPC Target software displays the signal using
the default format of %15.6f, which is a floating-point format, with no label.

7 If you have selected scope mode Numerical, in the Numerical format box
type a label and associated numeric format type in which to display signals.
By default, the entry format is floating-point with no label, %15.6f. The
Numerical format box takes entries of the format

'[LabelN] [%width.precision][type] [LabelX]'

where

• LabelN is the label for the signal. You can use a different label for each
signal or the same label for each signal. This argument is optional.

• width is the minimum number of characters to offset from the left of the
screen or label. This argument is optional.

• precision is the maximum number of decimal places for the signal
value. This argument is optional.

• type is the data type for the signal format. You can use one or more of
the following types:

5-22

Trace Signals with Target Scope (xPC) Blocks

Type Description

%e or %E Exponential format using e or E

%f Floating point

%g Signed value printed in f or e format depending on
which is smaller

%G Signed value printed in f or E format depending on
which is smaller

• LabelX is a second label for the signal. You can use a different label for
each signal or the same label for each signal. This argument is optional.

Enclose the contents of the Numerical format text box in single quotation
marks.

For example,

'Foo %15.2f end'

For a whole integer signal value, enter 0 for the precision value. For
example,

'Foo1 %15.0f end'

For a line with multiple entries, delimit each entry with a command and
enclose the entire string in single quotation marks. For example,

'Foo2 %15.6f end,Foo3 %15.6f end2'

You can have multiple Numerical format entries, separated by a comma.
If you enter one entry, that entry applies to each signal (scalar expansion).
If you enter fewer label entries than signals, the first entry applies to the
first signal, the second entry applies to the second signal, and so forth, and
the last entry is scalar expanded for the remaining signals. If you have two
entries and one signal, the software ignores the second label entry and
applies the first entry. You can enter as many format entries as you have
signals for the scope. The format string has a maximum length of 100
characters, including spaces, for each signal.

5-23

5 Signals and Parameters

8 Select the Grid check box to display grid lines on the scope. Note that this
parameter is only applicable for target scopes with scope modes of type
Graphical redraw, Graphical sliding, or Graphical rolling.

9 In the Y-Axis limits box, enter a row vector with two elements where
the first element is the lower limit of the y-axis and the second element is
the upper limit. If you enter 0 for both elements, then scaling is set to
auto. Note that this parameter is only applicable for target scopes with
scope modes of type Graphical redraw, Graphical sliding, or Graphical
rolling.

10 In the Number of samples box, enter the number of values to be acquired
in a data package.

• If you select a Scope mode of Graphical redraw, the display redraws
the graph every Number of Samples.

• If you select a Scope mode of Numerical, the block updates the output
every Number of samples.

• If you select a Trigger mode other than FreeRun, this parameter can
specify the number of samples to be acquired before the next trigger
event.

11 In the Number of pre/post samples box, enter the number of samples
to save or skip.

• Specify a value less than 0 to save this number of samples before a
trigger event.

• Specify a value greater than 0 to skip this number of samples after the
trigger event before data acquisition begins.

12 In the Decimation box, enter a value to indicate that data should be
collected at each sample time (1) or at less than every sample time (2 or
greater).

13 From the Trigger mode list, select FreeRun.

• If you select FreeRun or Software Triggering, the trigger event is an
automatic one. No external trigger specification is required.

• If you select Signal Triggering, then, in the Trigger signal box, enter
the index of a signal. In the Trigger level box, enter a value for the

5-24

Trace Signals with Target Scope (xPC) Blocks

signal to cross before triggering. From the Trigger slope list, select
either, rising, or falling. You do not need to specify scope triggering.

• If you select Scope Triggering, then in the Trigger scope number
box, enter the scope number of a Scope block. If you use this trigger
mode, you must also add a second Scope block to the Simulink model.
You do not need to specify signal triggering.

• If you select Scope Triggering and want the scope to trigger on a
specific sample of the other scope, enter a value in the Sample to
trigger on box. The default value is 0 and indicates that the triggering
scope and the triggered (current) scope start simultaneously. For more
information on this value, see “Triggering One Scope with Another Scope
to Acquire Data” on page 7-18.

The target scope dialog box looks like this:

5-25

5 Signals and Parameters

14 Click OK.

15 From the File menu, click Save As. The model is saved as my_xpc_osc2.

5-26

xPC Target™ Scope Usage

xPC Target Scope Usage
• To monitor an output signal from a Constant block by connecting it to an
xPC Target Scope block, you must add a test point for the Constant block
output signal.

• You can only add an xPC Target scope to the topmost model, not to a
referenced model. To log signals from referenced models, use xPC Target
Explorer scopes or xPC Target language scope objects.

• When the target application is built and downloaded, the xPC Target
kernel creates a scope representing the Scope block. To change xPC Target
Scope parameters after building the target application or while it is
running, assign the scope to a MATLAB variable using the target object
method xpctarget.xpc.getscope. If you use xpctarget.xpc.getscope to
remove a scope created during the build and download process, and then
restart the target application, the xPC Target kernel recreates the scope.

• If the output of a Mux block is connected to the input of an xPC Target
Scope block, the signal might not be observable. To observe the signal,
add a unity gain block (a Gain block with a gain of 1) between the Mux
block and the xPC Target Scope block. See “Nonobservable Signals and
Parameters” on page 5-148.

5-27

5 Signals and Parameters

Target Scope Usage
• xPC Target supports ten target scopes. Each target scope can contain up
to 10 signals.

• For a target scope, logged data (sc.Data and sc.Time) is not accessible
over the command-line interface on the host computer. This is because the
scope object status (sc.Status) is never set to Finished. Once the scope
completes one data cycle (time to collect the number of samples), the scope
engine automatically restarts the scope.

If you create a scope object, for example, sc = getscopes(tg,1) for a
target scope, and then try to get the logged data by typing sc.Data, you
get an error message:

Scope # 1 is of type 'Target'! Property Data
is not accessible.

If you want the same data for the same signals on the host computer while
the data is displayed on the target computer, you need to define a second
scope object with type host. Then you need to synchronize the acquisitions
of the two scope objects by setting TriggerMode for the second scope to
'Scope'.

5-28

Trace Signals with Host Scope (xPC) Blocks

Trace Signals with Host Scope (xPC) Blocks
xPC Target includes a specialized Scope (xPC) block that you can configure to
display signal and time data on the host computer monitor. To do this, add a
Scope (xPC) block to the model, select Scope type to Host and configure the
other parameters as described in the following procedure.

Note

• Do not confuse xPC Target Scope blocks with standard Simulink Scope
blocks.

• For more on using xPC Target Scope blocks, see “xPC Target Scope Usage”
on page 5-27.

• For more on host scopes, see “Host Scope Usage” on page 5-32.

This procedure uses the model my_xpc_osc2 as an example.

1 In the MATLAB window, type

my_xpc_osc2

The Simulink block diagram opens for the model my_xpc_osc2.

2 Double-click the block labeled Scope (xPC).

The Block Parameters: Scope (xPC) dialog box opens. By default, the target
scope dialog is displayed.

3 In the Scope number box, a unique number to identify the scope is displayed.
This number is incremented each time you add a new xPC Target scope.
Normally, you do not edit this value.

This number identifies the xPC Target Scope block and the scope screen on
the host or target computers.

4 From the Scope type list, select Host. The updated dialog box is displayed.

5-29

5 Signals and Parameters

5 Select the Start scope when application starts check box to start a scope
when the target application is downloaded and started. With a target scope,
the scope window opens automatically. With a host scope, you can open a host
scope viewer window from xPC Target Explorer.

Note This setting is a convenience for most boot modes. It is mandatory
in Stand Alone mode because the host computer is not available to issue
a command to start scopes.

6 In the Number of samples box, enter the number of values to be acquired in
a data package.

7 In the Number of pre/post samples box, enter the number of samples to
save or skip. Specify a value less than 0 to save this number of samples before
a trigger event. Specify a value greater than 0 to skip this number of samples
after the trigger event before data acquisition begins.

8 In the Decimation box, enter a value to indicate that data should be collected
at each sample time (1) or at less than every sample time (2 or greater).

9 From the Trigger mode list, select FreeRun.

If you select FreeRun or Software Triggering, the trigger event is an
automatic one. No external trigger specification is required.

If you select Signal Triggering, then in the Trigger signal box, enter the
index of a signal. In the Trigger level box, enter a value for the signal to
cross before triggering. From the Trigger slope list, select either, rising,
or falling. You do not need to specify scope triggering.

If you select Scope Triggering, then in the Trigger scope number box,
enter the scope number of a Scope block. If you use this trigger mode, you
must also add a second Scope block to the Simulink model. You do not need
to specify signal triggering.

If you select Scope Triggering and want the scope to trigger on a specific
sample of the other scope, enter a value in the Sample to trigger on box. The
default value is 0 and indicates that the triggering scope and the triggered

5-30

Trace Signals with Host Scope (xPC) Blocks

(current) scope start simultaneously. For more information on this value, see
“Triggering One Scope with Another Scope to Acquire Data” on page 7-18.

The host scope dialog box looks like this:

10 Click OK.

11 From the File menu, click Save As. The model is saved as my_xpc_osc2.

5-31

5 Signals and Parameters

Host Scope Usage
• xPC Target supports as many host scopes as the target computer resources
can support. Each host scope can contain as many signals as the target
computer has resources to support them.

• Use host scopes to log signal data triggered by an event while your target
application is running. The host scope acquires the first N samples into a
buffer. You can retrieve this buffer into the scope object property sc.Data.
The scope then stops and waits for you to manually restart the scope.

The number of samples N to log after triggering an event is equal to the
value you entered in the Number of Samples parameter.

Select the type of event in the Block Parameters: Scope (xPC) dialog box by
setting Trigger Mode to Signal Triggering, Software Triggering, or
Scope Triggering.

5-32

Trace Signals with Target Scopes Using xPC Target™ Explorer

Trace Signals with Target Scopes Using xPC Target
Explorer

You can create a virtual target scope on the target computer using xPC Target
Explorer. These scopes have the full capabilities of the Scope (xPC) block in
Target mode, but do not persist past the current execution.

Note For information on using target scope blocks, see “Trace Signals with
Target Scope (xPC) Blocks” on page 5-21 and “Target Scope Usage” on page
5-28.

This procedure uses the model xpcosc as an example. It assumes you have
done the following setup:

1 Built and downloaded the target application to the target computer using

Simulink (on the toolbar)

2 Run xPC Target Explorer (command xpcexplr)

3 Connected to the target computer in the Targets pane (on the toolbar)

4 Set property Stop time to inf in the Applications pane (on the toolbar)

To configure a virtual target scope:

1 In the Scopes pane, expand the xpcosc node.

2 To add a target scope, select Target Scopes and click the Add Scope
icon on the toolbar, or right-click node Target Scopes and select Add
Target Scope.

Under node Target Scopes appears the new scope, for example Scope 1.

3 Select Scope 1 and click the Properties icon on the toolbar, or expand
Scope 1 and double-click Properties.

4 In the Scope Properties workspace, click Signals.

5-33

5 Signals and Parameters

Note You add signals from the Target Applications Signals workspace.

5 In the Target Applications pane, expand the target application node
and then node Model Hierarchy.

6 Select the model node and click the View Signals icon on the toolbar, or
right-click the model name and click View Signals.

The Signals workspace opens, showing a table of signals with properties
and actions.

Note If a block is unnamed, xPC Target Explorer does not display signals
or a node for that block. To reference such a block, provide an alphanumeric
name for that block, rebuild and download the model to the target
computer, and reconnect the MATLAB session to the target computer.

7 In the Signals workspace, to add signal Signal Generator to Scope1,
click the down arrow next to the Scopes icon in its Actions column.

A list of scope types appears. Scope 1appears under node Target Scopes.

Tip

• You can create a virtual target scope from this menu by clicking Add
Scope next to scope type Target Scopes.

• You can add or remove signals from a virtual target scope while the
scope is either stopped or running.

• To group signals, see “Create Signal Groups Using xPC Target Explorer”
on page 5-58.

8 Click the Add Signal(s) icon next to Scope1 under node Target Scopes.

9 Add signal Integrator1 to Scope 1 in the same way.

5-34

Trace Signals with Target Scopes Using xPC Target™ Explorer

The dialog box looks like this:

5-35

5 Signals and Parameters

5-36

Trace Signals with Target Scopes Using xPC Target™ Explorer

Tip To make both workspaces visible at the same time, click and hold the
tab for one workspace and drag it down until the following icon appears in

the middle of the dialog box: . Continue to drag until the cursor reaches
the required quadrant, then release the mouse button.

10 To start execution, click the target application and click the Start icon on
the toolbar, or right-click the target application and click Start.

The application starts running. No output appears on the target computer
monitor.

11 To start Scope 1, click Scope 1 in the Scopes pane and click the Start
Scope icon on the toolbar, or right-click Scope 1 and click Start.

Output for signals Signal Generator and Integrator1 appears on the
target computer monitor.

The target computer screen looks like this:

5-37

5 Signals and Parameters

Tip

• To configure the target computer display, see “Configure Target Scope
Display Using xPC Target Explorer” on page 5-54.

• To configure data sampling, see “Configure Scope Sampling Using xPC
Target Explorer” on page 5-40.

• To configure scope triggering, see “Configure Interactive Scope
Triggering Using xPC Target Explorer” on page 5-44 and “Configure
Noninteractive Scope Triggering Using xPC Target Explorer” on page
5-48.

5-38

Trace Signals with Target Scopes Using xPC Target™ Explorer

12 To stop Scope 1, click Scope 1 in the Scopes pane and click the Stop
Scope icon on the toolbar, or right-click Scope 1 and click Stop.

The signals shown on the target computer stop updating while the target
application continues running. The target computer monitor displays
a message like this:

Scope: 1, set to state 'interrupted'

13 To stop execution, click the target application and click the Stop icon on
the toolbar, or right-click the target application and click Stop.

The target application on the target computer stops running, and the target
computer displays messages like this:

minimal TET: 0.0000006 at time 0.001250
maximal TET: 0.0000013 at time 75.405500

5-39

5 Signals and Parameters

Configure Scope Sampling Using xPC Target Explorer
You can customize sampling for all scope types to facilitate data access to the
running model. You can configure sampling whether you created the scope by
adding a Scope (xPC) block to the model or by adding the scope at run time.

This procedure uses the model xpcosc as an example. It assumes that you
have gone through the procedure in “Trace Signals with Target Scopes Using
xPC Target Explorer” on page 5-33, and that target execution and scopes
are stopped.

1 Select Scope 1 and open the Properties pane (on the Scopes toolbar).

2 In the Scope 1 properties pane, click Sampling.

3 In the Number of Samples box, enter the number of values to be acquired
in a data package, here 250.

Tip

• If you select a Display mode of Graphical redraw, the display redraws
the graph every Number of Samples.

• If you select a Display mode of Numerical, the block updates the output
every Number of Samples.

• If you select a Trigger Mode other than FreeRun, this parameter can
specify the number of samples to be acquired before the next trigger
event. For more on trigger modes , see “Configure Interactive Scope
Triggering Using xPC Target Explorer” on page 5-44 and “Configure
Noninteractive Scope Triggering Using xPC Target Explorer” on page
5-48.

4 In the Decimation box, enter 10 to indicate that data should be collected
at every 10th sample time. The default is 1, to collect data at every sample
time.

5 In the Number of pre/post samples box, enter the number of samples
to save or skip, here 0, the default.

5-40

Configure Scope Sampling Using xPC Target™ Explorer

Tip

• Specify a value less than 0 to save this many samples before a trigger
event.

• Specify a value greater than 0 to skip this many samples after the trigger
event before data acquisition begins.

The dialog box looks like this:

5-41

5 Signals and Parameters

6 To see the effect of these settings, start execution (on the Applications
toolbar).

7 Start Scope 1 (on the toolbar).

5-42

Configure Scope Sampling Using xPC Target™ Explorer

Output for signals Signal Generator and Integrator1 appears on the
target computer monitor:

8 Stop Scope 1 (on the toolbar).

9 Stop execution (on the Applications toolbar).

5-43

5 Signals and Parameters

Configure Interactive Scope Triggering Using xPC Target
Explorer

You can customize scope triggering for all scope types to facilitate your
interaction with the running model. You can configure triggering whether
you created the scope by adding a Scope (xPC) block to the model or by adding
the scope at run time.

This procedure uses the model xpcosc as an example. It assumes that you
have gone through the procedure in “Trace Signals with Target Scopes Using
xPC Target Explorer” on page 5-33, and that execution and scopes are stopped.

1 Start execution (on the Applications toolbar).

2 Select Scope 1 and open the Properties pane (on the Scopes toolbar).

3 In the Scope 1 pane, click Triggering.

4 Select Trigger Mode Freerun.

By default, the Trigger Mode is set to Freerun. In this mode, the scope
triggers automatically as soon as it is started and displays data until it is
stopped.

5 Start and stop Scope 1 (and on the toolbar).

Signal data is displayed on the target computer monitor when the scope
starts and stops when the scope stops.

6 Select Trigger Mode Software.

In this mode, the scope triggers when you select Scope 1 and click on the
Trigger icon on the toolbar. It runs until you click again.

7 Start Scope 1 (on the toolbar).

The Trigger icon is enabled on the toolbar.

8 Click on the Trigger icon on the Scopes toolbar.

5-44

Configure Interactive Scope Triggering Using xPC Target™ Explorer

The current signal data is displayed on the target computer monitor when
you click.

9 Stop Scope 1 (on the toolbar).

10 Select Trigger Mode Scope.

Settings Trigger scope and Trigger scope sample appear.

11 Set Trigger scope to 1 and hit carriage return.

The current signal data is displayed when you click on the Trigger
icon on the toolbar.

12 Leave Trigger scope sample set to 0.

Scope 1 will trigger on the first sample after you click on the Trigger icon.

13 Start Scope 1 (on the toolbar).

The Trigger icon is enabled on the toolbar.

14 Click on the Trigger icon on the Scopes toolbar.

The current signal data is displayed on the target computer monitor when
you click.

15 Stop Scope 1 (on the toolbar).

The dialog box looks like this:

5-45

5 Signals and Parameters

The target monitor looks like this:

5-46

Configure Interactive Scope Triggering Using xPC Target™ Explorer

16 Stop execution (on the Applications toolbar).

5-47

5 Signals and Parameters

Configure Noninteractive Scope Triggering Using xPC
Target Explorer

You can customize scope triggering for all scope types to facilitate your control
of the running model. You can configure triggering whether you created the
scope by adding a Scope (xPC) block to the model or by adding the scope at
run time.

This procedure uses the model xpcosc as an example. It assumes that you
have gone through the procedure in “Trace Signals with Target Scopes Using
xPC Target Explorer” on page 5-33, and that execution and scopes are stopped.

1 Start execution (on the Applications toolbar).

2 Select Scope 1 and open the Properties pane (on the Scopes toolbar).

3 In the Scope 1 pane, click Triggering.

4 Select Trigger Mode Signal.

Settings Trigger Signal, Trigger Slope, and Trigger Level appear.

5 Set Trigger Signal to Signal Generator.

6 Set Trigger Slope to Rising.

7 Leave Trigger Level as 0. This indicates that the signal crosses 0 before
Scope 1 triggers.

The dialog box looks like this:

5-48

Configure Noninteractive Scope Triggering Using xPC Target™ Explorer

8 Start Scope 1 (on the toolbar).

Signal data is displayed on the target computer monitor, with the rising
pulse of Signal Generator just beyond the left side:

5-49

5 Signals and Parameters

9 Stop Scope 1 (on the toolbar).

10 Add target scope Scope 2 (on the Scopes toolbar).

11 Open the Signals pane (on the Applications toolbar).

12 Add signal Integrator to Scope 2 in the Signals pane.

13 In the Scope 2 pane, click Triggering.

14 Select Trigger Mode Scope.

Settings Trigger scope and Trigger scope sample appear.

15 Set Trigger scope to 1 and hit carriage return. This will cause Scope 2
to trigger when Scope 1 triggers.

5-50

Configure Noninteractive Scope Triggering Using xPC Target™ Explorer

16 Leave Trigger scope sample set to 0. Scope 2 will trigger on the same
sample as Scope 1.

The dialog box looks like this:

5-51

5 Signals and Parameters

5-52

Configure Noninteractive Scope Triggering Using xPC Target™ Explorer

Note You must explicitly start and stop both scopes.

Scope 1 and Scope 2 display signal data on the target computer monitor.
The target monitor screen looks like this:

18 Stop both Scope 1 and Scope 2 (on the toolbar).

19 Stop execution (on the Applications toolbar).

5-53

5 Signals and Parameters

Configure Target Scope Display Using xPC Target Explorer
You can configure the target scope display for all scope types to facilitate
your view of the signal data. You can configure display whether you created
the scope by adding a Scope (xPC) block to the model or by adding the scope
at run time.

This procedure uses the model xpcosc as an example. It assumes that you
have gone through the procedure in “Trace Signals with Target Scopes Using
xPC Target Explorer” on page 5-33, and that execution and scopes are stopped.

1 Start execution (on the Applications toolbar).

2 Select Scope 1 and open the Properties pane (on the Scopes toolbar).

3 In the Scope 1 pane, click Display.

4 Select Display mode Redraw and click in the Y-Limits box.

This is the default value. It causes the scope display to redraw as soon as it
has acquired as many samples as specified in Number of Samples.

5 Start Scope 1 (on the toolbar).

Signal data is displayed on the target computer monitor, appearing to
move to the left.

6 Enter [0,10] in the Y-Limits box and hit carriage return. The default
setting is [0,0], which automatically scales the output according to the
signal values.

The display changes to show only values at and above the zero line’

7 Clear the Grid (On/Off) check box. By default, the box is selected.

The dialog box looks like this:

5-54

Configure Target Scope Display Using xPC Target™ Explorer

The target computer monitor looks like this:

5-55

5 Signals and Parameters

8 Select Display mode Numerical and click in the Y-Limits box.

The grid and axes disappear, and the target computer monitor displays
the signals, color coded, in the default format of %15.6f (a floating-point
format with no label).

9 Select Display mode Rolling and click in the Y-Limits box.

The display changes to a display that continuously moves a window along
the signal stream. New data enters the display from the right and moves
toward the left.

10 Select Display mode Sliding and click in the Y-Limits box. In this mode,
the scope refreshes continuously. New data overwrites the display from the
left toward the right.

5-56

Configure Target Scope Display Using xPC Target™ Explorer

11 Stop Scope 1 (on the toolbar).

12 Stop execution (on the Applications toolbar).

5-57

5 Signals and Parameters

Create Signal Groups Using xPC Target Explorer
When testing a complex model composed of many reference models, you will
frequently be required to select signals from multiple parts and levels of the
model. To do this, create a signal group.

This procedure uses the model xpcosc as an example. It assumes you have
done the following setup:

1 Built and downloaded the target application to the target computer using

Simulink (on the toolbar)

2 Run xPC Target Explorer (command xpcexplr)

3 Connected to the target computer in the Targets pane (on the toolbar)

To create a signal group:

1 In the Target Applications pane, expand the target application node and
right-click node Groupings.

2 Click New Signal Group.

The Add New Signal Group Item dialog box appears.

3 Enter a name, for example signalgroup1.sig, in the Name text box. Enter
a folder for the group file in the Location text box.

4 Click OK.

A new signal group appears, along with its Signal Group workspace.

5 In the Target Applications pane, expand the target application node
and then node Model Hierarchy.

6 Select the model node and click the View Signals icon on the toolbar, or
right-click the model name and click View Signals.

The Signals workspace opens, showing a table of signals with properties
and actions.

5-58

Create Signal Groups Using xPC Target™ Explorer

7 In the Signal Groups workspace, to add signal Signal Generator to
signalgroup1.sig, click the down arrow next to the Signals Grouping
icon in its Actions column.

A list of signal groups appears, including signalgroup1.sig.

8 Click the Add Signal(s) icon next to signalgroup1.sig.

9 Add signal Integrator1 to signalgroup1.sig in the same way.

10 Click in the Signal Group workspace, then click the Save icon on the
toolbar, or click File > Save.

The dialog box looks like this:

5-59

5 Signals and Parameters

5-60

Create Signal Groups Using xPC Target™ Explorer

Tip

• When you are monitoring a signal group, you can change the output
format of the group by selecting one of the options in the Format column.

• To make both workspaces visible at the same time, click and hold the
tab for one workspace and drag it down until the following icon appears

in the middle of the dialog box: . Continue to drag until the cursor
reaches the required quadrant, then release the mouse button.

You can now monitor, trace, and log each of the individual signals in the
selected group. For more on how to do this, see:

• “Monitor Signals with xPC Target Explorer” on page 5-5

• “Trace Signals with Target Scopes Using xPC Target Explorer” on page 5-33

• “Trace Signals with Host Scopes Using xPC Target Explorer” on page 5-62

• “Log Signals with File Scopes Using xPC Target Explorer” on page 5-89

5-61

5 Signals and Parameters

Trace Signals with Host Scopes Using xPC Target Explorer
You can create a virtual host scope on the target computer using xPC Target
Explorer. These scopes have the full capabilities of the Scope (xPC) block in
Host mode, but do not persist past the current execution.

Note For information on using host scope blocks, see “Trace Signals with
Host Scope (xPC) Blocks” on page 5-29 and “Host Scope Usage” on page 5-32.

This procedure uses the model xpcosc as an example. It assumes you have
done the following setup:

1 Built and downloaded the target application to the target computer using

Simulink (on the toolbar)

2 Run xPC Target Explorer (command xpcexplr)

3 Connected to the target computer in the Targets pane (on the toolbar)

4 Set property Stop time to inf in the Applications pane (on the toolbar)

To configure a virtual host scope:

1 In the Scopes pane, expand the xpcosc node.

2 To add a host scope, select Host Scopes and click the Add Scope icon on
the toolbar, or right-click node Host Scopes and select Add Host Scope.

Under node Host Scopes appears the new scope, for example Scope 1.

3 Expand Scope 1 and click the Properties icon on the toolbar, or
double-click Properties.

4 In the Scope Properties pane, click Signals.

Note Add signals from the Target Applications Signals workspace.

5-62

Trace Signals with Host Scopes Using xPC Target™ Explorer

5 In the Target Applications pane, expand the target application node
and then node Model Hierarchy.

6 Select the model node and click the View Signals icon on the toolbar, or
right-click the model name and click View Signals.

The Signals workspace opens, showing a table of signals with properties
and actions.

Note If a block is unnamed, xPC Target Explorer does not display signals
or a node for that block. To reference such a block, provide an alphanumeric
name for that block, rebuild and download the model to the target
computer, and reconnect the MATLAB session to the target computer.

7 In the Signals workspace, to add signal Signal Generator to Scope1,
click the down arrow next to the Scopes icon in its Actions column.

A list of scope types appears. Scope 1appears under node Host Scopes.

Tip

• You can also create a virtual host scope from this menu by clicking Add
Scope next to scope type Host Scopes.

• You can add or remove signals from a virtual host scope while the scope
is either stopped or running.

• To group signals, see “Create Signal Groups Using xPC Target Explorer”
on page 5-58.

8 Click the Add Signal(s) icon next to Scope1 under node Host Scopes.

9 Add signal Integrator1 to Scope 1 in the same way.

The dialog box looks like this:

5-63

5 Signals and Parameters

5-64

Trace Signals with Host Scopes Using xPC Target™ Explorer

Tip To make all workspaces visible at the same time, click and hold the
tab for one workspace and drag it down until the following icon appears

in the middle of the dialog box: . Continue to drag until the cursor
reaches the required quadrant, then release the mouse button. Repeat for
the other workspaces.

10 To view the host scope, select Scope 1 and click the View Scope icon on
the toolbar, or right-click Scope 1 node and click View Scope.

The Host Scope Viewer window appears as a separate tab. The signals you
add to the scope appear at the top right of the viewer.

Tip

• To configure the host scope viewer, see “Configure the Host Scope
Viewer” on page 5-68

• To configure data sampling, see “Configure Scope Sampling Using xPC
Target Explorer” on page 5-40.

• To configure scope triggering, see “Configure Interactive Scope
Triggering Using xPC Target Explorer” on page 5-44 and “Configure
Noninteractive Scope Triggering Using xPC Target Explorer” on page
5-48.

11 To start execution, click the target application and click the Start icon on
the toolbar, or right-click the target application and click Start.

The application starts running. No output appears on the host scope viewer.

12 To start Scope 1, click Scope 1 in the Scopes pane and click the Start
Scope icon on the toolbar, or right-click Scope 1 and click Start.

Output for signals Signal Generator and Integrator1 appears on the
host scope viewer.

The dialog box looks like this:

5-65

5 Signals and Parameters

5-66

Trace Signals with Host Scopes Using xPC Target™ Explorer

13 To stop Scope 1, click Scope 1 in the Scopes pane and click the Stop
Scope icon on the toolbar, or right-click Scope 1 and click Start.

The signals shown on the target computer stop updating while the target
application continues running. The target computer monitor displays
a message like this:

Scope: 1, set to state 'interrupted'

14 To stop execution, click the target application and click the Stop icon on
the toolbar, or right-click the target application and click Stop.

The target application on the target computer stops running, and the target
computer displays messages like this:

minimal TET: 0.0000006 at time 0.001250
maximal TET: 0.0000013 at time 75.405500

5-67

5 Signals and Parameters

Configure the Host Scope Viewer
You can customize the viewer for each host scope to facilitate your interaction
with the running model.

This procedure uses the model xpcosc as an example. It assumes that you
have gone through the procedure in “Trace Signals with Host Scopes Using
xPC Target Explorer” on page 5-62 and that execution and scopes are stopped.

1 Start execution (on the Applications toolbar).

2 To start Scope 1, click the Start icon on the Host Scope Viewer toolbar.

3 To trigger Scope 1, click the Trigger icon on the Host Scope Viewer
toolbar.

Tip To interactively trigger a capture using the Trigger icon , you
must set the scope Trigger Mode to Software or Scope. See “Configure
Interactive Scope Triggering Using xPC Target Explorer” on page 5-44.

4 In the xPC Target Host Scope Viewer, right-click anywhere in the axis
area of the viewer and click Edit.

The Host Scope Viewer display parameter icons become enabled on the
toolbar.

5 Adjust the Host Scope Viewer display using:

• Auto Scale — To scale the display to accommodate the top and
bottom of the Y-axis.

• Axes Scroll — To move the content up and down and right and left
relative to the axes. The axes scroll as necessary.

• Axes Zoom — To stretch and compress the X-axis and Y-axis.

• Zoom In — To zoom in on the current center of the display.

• Zoom Out — To zoom out from the current center of the display.

5-68

Configure the Host Scope Viewer

• Zoom Box — To select an area of interest in the display. When you
release the mouse button, the display zooms in upon the selected area.

• Data Cursor — To display data values using a set of cross-hairs in
the display.

Data is displayed as the pair x-value,y-value, indicating the value at
that point on the display. You can drag the center of the cross hairs and
observe the value at each point.

• Legends — To toggle display of the signal names.

6 To stop Scope 1,click the Stop icon on the Host Scope Viewer toolbar.

7 Stop execution (on the Applications toolbar).

5-69

5 Signals and Parameters

Configure Data Cursor Using xPC Target Explorer
This procedure uses the model xpcosc as an example. It assumes that you
have gone through the procedure in “Trace Signals with Host Scopes Using
xPC Target Explorer” on page 5-62 and that the target application is running.

1 Click the Data Cursor icon on the Host Data Viewer toolbar.

2 Right-click near a cursor line and click Style.

3 Click on the following Style options to measure the data:

Value-XY

Value-X

Value-Y

Period

Peak-Peak

Frequency

4 Right-click near a cursor line and click Hide to hide the Data Cursor
display.

5 Right-click near a cursor line and click Edit to edit a value in the signal
output.

5-70

Trace Signals with Target Scopes Using MATLAB® Language

Trace Signals with Target Scopes Using MATLAB Language
Creating a scope object allows you to select and view signals using xPC Target
functions instead of the xPC Target graphical user interface. This procedure
assumes that you have assigned tg to the target computer.

This procedure uses the Simulink model xpcosc as an example, and assumes
you have built the target application for this model. It describes how to trace
signals with target scopes.

1 Start running your target application. Type any of

+tg

or

tg.start

or

start(tg)

The target computer displays the following message.

System: execution started (sample time: 0.0000250)

2 To get a list of signals, type either

set(tg, 'ShowSignals', 'on')

or

tg.ShowSignals='on'

The MATLAB window displays a list of the target object properties for the
available signals. For example, the signals for the model xpcosc are as
follows:

ShowSignals = on
Signals = INDEX VALUE BLOCK NAME LABEL

0 0.000000 Integrator1
1 0.000000 Signal Generator

5-71

5 Signals and Parameters

2 0.000000 Gain
3 0.000000 Integrator
4 0.000000 Gain1
5 0.000000 Gain2
6 0.000000 Sum

For more information, see “Monitor Signals with MATLAB Language”
on page 5-9.

3 Create a scope to be displayed on the target computer. For example, to
create a scope with an identifier of 1 and a scope object name of sc1, type

sc1=tg.addscope('target', 1)

or

sc1=addscope(tg, 'target', 1)

4 List the properties of the scope object. For example, to list the properties of
the scope object sc1, type

sc1

The MATLAB window displays a list of the scope object properties. Notice
that the scope properties Time and Data are not accessible with a target
scope.

xPC Scope Object
Application = xpcosc
ScopeId = 1
Status = Interrupted
Type = Target
NumSamples = 250
NumPrePostSamples = 0
Decimation = 1
TriggerMode = FreeRun
TriggerSignal = -1
TriggerLevel = 0.000000
TriggerSlope = Either
TriggerScope = 1
TriggerSample = -1
Mode = Redraw (Graphical)

5-72

Trace Signals with Target Scopes Using MATLAB® Language

YLimit = Auto
Grid = On
Signals = no Signals defined

5 Add signals to the scope object. For example, to add Integrator1 and
Signal Generator, type

sc1.addsignal ([0,1])

or

addsignal(sc1,[0,1])

The target computer displays the following messages.

Scope: 1, signal 0 added
Scope: 1, signal 1 added

After you add signals to a scope object, the signals are not shown on the
target screen until you start the scope.

6 Start the scope. For example, to start the scope sc1, type either

+sc1

or

sc1.start

or

start(sc1)

The target screen plots the signals after collecting each data package.
During this time, you can observe the behavior of the signals while the
scope is running.

7 Stop the scope. Type either

-sc1

or

sc1.stop

5-73

5 Signals and Parameters

or

stop(sc1)

The signals shown on the target computer stop updating while the target
application continues running, and the target computer displays the
following message.

Scope: 1, set to state 'interrupted'

8 Stop the target application. In the MATLAB window, type either

-tg

or

tg.stop

or

stop(tg)

The target application on the target computer stops running, and the target
computer displays the following messages.

minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

5-74

Trace Signals with Simulink® External Mode

Trace Signals with Simulink External Mode
You can use Simulink external mode to establish a communication channel
between your Simulink block diagram and your target application. The
block diagram becomes a graphical user interface to your target application.
Simulink scopes can display signal data from the target application, including
from models referenced inside a top model. You can control which signals to
upload through the External Signal & Triggering dialog box (see “Signal
Selection” and “External Mode Control Panel”).

Note Do not use Simulink external mode while xPC Target Explorer is
running. Use only one interface or the other.

This procedure uses the model xpcosc as an example. xpcosc contains a
Simulink Scope block.

1 In the MATLAB window, type xpcosc.

2 In the Simulink window, from the Code menu, select External Mode
Control Panel.

The External Mode Control Panel dialog box opens.

3 Click the Signal & Triggering button.

The External Signal & Triggering dialog box opens.

4 Set the Source parameter to manual.

5 Set theMode parameter to normal. In this mode, the scope acquires data
continuously.

6 Select the Arm when connecting to target check box.

7 Enter 0 in the Delay box.

8 In the Duration box, enter the number of samples for which external mode
is to log data, for example 1000.

5-75

5 Signals and Parameters

The External Signal & Triggering dialog box looks like this:

9 Click Apply, then Close.

10 Click Close in the External Mode Control Panel dialog box.

11 In the Simulink tool bar, increase the simulation stop time to, for example,
50.

12 From the File menu, select Save As and enter a filename. For example,
enter my_xpc_osc6 and then click OK.

13 To build and download the target application, click the Build icon on
the Simulink toolbar or, from the Code menu, click C/C++ Code > Build
Model.

5-76

Trace Signals with Simulink® External Mode

The xPC Target software downloads the target application to the default
target computer.

14 In the Simulink window, click Simulation > Mode > External. A check
mark appears next to the menu item External, and Simulink external
mode is activated.

15 If a Scope window is not displayed for the Scope block, double-click the
Scope block.

A Scope window is displayed.

16 Click the Connect To Target icon on the toolbar, or click
Simulation > Connect To Target.

All the current Simulink model parameters are downloaded from the host
computer to the target application.

17 To start the simulation, click the Run icon on the toolbar, or click
Simulation > Run.

The target application begins running on the target computer and the
Scope window displays plotted data:

5-77

5 Signals and Parameters

18 To stop the simulation, click the Stop icon on the toolbar, or click
Simulation > Stop.

5-78

External Mode Usage

External Mode Usage
• When setting up signal triggering (Source set to signal), you must explicitly
specify the element number of the signal in the Trigger signal:Element
box. If the signal is a scalar, enter a value of 1. If the signal is a wide
signal, enter a value from 1 to 10. Do not enter Last or Any in this box
when uploading xPC Target signals to Simulink scopes.

• The Direction:Holdoff value has no effect for the xPC Target signal
uploading feature.

• Attempting to upload information from buses and virtual signals inside a
reference model generates a warning.

5-79

5 Signals and Parameters

Trace Signals with a Web Browser
The Web browser interface allows you to visualize data using a graphical
user interface.

After you connect a Web browser to the target computer, you can use the
scopes page to add, remove, and control scopes on the target computer:

1 In the left frame, click the Scopes button.

The browser loads the Scopes List pane into the right frame.

2 Click the Add Scope button.

A target scope is created and displayed on the target computer. The Scopes
pane displays a list of all the scopes present. You can add a new scope,
remove existing scopes, and control all aspects of a scope from this page.

To create a host scope, use the drop-down list next to the Add Scope
button to select Host. This item is set to Target by default.

3 Click the Edit button.

The scope editing pane opens. From this pane, you can edit the properties
of any scope, and control the scope.

4 Click the Add Signals button.

The browser displays an Add New Signals list.

5 Select the check boxes next to the signal names, and then click the Apply
button.

A Remove Existing Signals list is added above the Add New Signals
list.

You do not have to stop a scope to make changes. If the scope is running, the
Web interface stops the scope automatically and then restarts it when the
changes are made. It does not restart the scope if the state was originally
stopped.

5-80

Trace Signals with a Web Browser

When a host scope is stopped (Scope State is set to Interrupted) or finishes
one cycle of acquisition (Scope State is set to Finished), a button called Get
Data appears on the page. If you click this button, the scope data is retrieved
in comma-separated value (CSV) format. The signals in the scope are spread
across columns, and each row corresponds to one sample of acquisition. The
first column always corresponds to the time each sample was acquired.

Note If Scope State is set to Interrupted, the scope was stopped before
it could complete a full cycle of acquisition. Even in this case, the number of
rows in the CSV data will correspond to a full cycle. The last few rows (for
which data was not acquired) will be set to 0.

5-81

5 Signals and Parameters

Signal Logging Basics
Signal logging is the process for acquiring signal data during a real-time run,
stopping the target application, and then transferring the data to the host
computer for analysis. This is also known as real-time data streaming to the
target computer. You can plot and analyze the data, and later save it to a
disk. xPC Target signal logging samples at the base sample time. If you have
a model with multiple sample rates, add xPC Target scopes to the model to
sample signals at the required sample rates.

Note

• The xPC Target software does not support logging data with decimation.

• xPC Target Explorer works with multidimensional signals in column-major
format.

• Some signals are not observable. See “Nonobservable Signals and
Parameters” on page 5-148.

You can log signals using file scopes in the model, virtual file scopes in xPC
Target Explorer, outports in the model, MATLAB language, and a web
browser.

5-82

Log Signals with File Scope (xPC) Blocks

Log Signals with File Scope (xPC) Blocks
xPC Target includes a specialized Scope (xPC) block that you can configure to
save signal and time data to a file on the target computer hard drive, flash
drive, or removable drive.. To do this, add a Scope (xPC) block to the model,
select Scope type File, and configure the other parameters as described
in the following procedure.

Note

• Do not confuse xPC Target Scope blocks with standard Simulink Scope
blocks.

• For more on using xPC Target Scope blocks, see “xPC Target Scope Usage”
on page 5-27.

• For more on target scopes, see “File Scope Usage” on page 5-88.

This procedure uses the model my_xpc_osc2 as an example.

1 In the MATLAB window, type

my_xpc_osc2

The Simulink block diagram opens for the model my_xpc_osc2.

2 Double-click the block labeled Scope (xPC).

The Block Parameters: Scope (xPC) dialog box opens. By default, the target
scope dialog is displayed.

3 In the Scope number box, a unique number to identify the scope that is
displayed. This number is incremented each time you add a new xPC Target
scope. Normally, you do not want to edit this value.

This number identifies the xPC Target Scope block and the scope screen on
the host or target computer.

4 From the Scope type list, select File. The updated dialog box is displayed.

5-83

5 Signals and Parameters

5 Select the Start scope when application starts check box to start a scope
when the target application is downloaded and started. The scope window
opens automatically.

Note This setting is a convenience for most boot modes. It is mandatory
in Stand Alone mode because the host computer is not available to issue
a command to start scopes.

6 In the Number of samples box, enter the number of values to be acquired in
a data package. This parameter works in conjunction with the AutoRestart
check box. If the AutoRestart box is selected, the file scope collects data
up to Number of samples, then starts over again, overwriting the buffer.
If the AutoRestart box is not selected, the file scope collects data only up
to Number of samples, then stops.

7 In the Number of pre/post samples box, enter the number of samples to
save or skip. Specify a value less than 0 to save this number of samples before
a trigger event. Specify a value greater than 0 to skip this number of samples
after the trigger event before data acquisition begins.

8 In the Decimation box, enter a value to indicate that data should be collected
at each sample time (1) or at less than every sample time (2 or greater).

Note This value is the same as Decimation in the MATLAB interface.

9 From the Trigger mode list, select FreeRun, Software Triggering, Signal
Triggering, or Scope Triggering.

If you select FreeRun or Software Triggering, the trigger event is an
automatic one. No external trigger specification is required.

If you select Signal Triggering, then in the Trigger signal box, enter the
index of a signal. In the Trigger level box, enter a value for the signal to
cross before triggering. From the Trigger slope list, select either, rising,
or falling. You do not need to specify scope triggering.

5-84

Log Signals with File Scope (xPC) Blocks

If you select Scope Triggering, then in the Trigger scope number box,
enter the scope number of a Scope block. If you use this trigger mode, you
must also add a second Scope block to the Simulink model. You do not need
to specify signal triggering.

If you want the scope to trigger on a specific sample of the other scope,
enter a value in the Sample to trigger on box. The default value is 0 and
indicates that the triggering scope and the triggered (current) scope start
simultaneously. For more information on this value, see “Triggering One
Scope with Another Scope to Acquire Data” on page 7-18.

10 In the Filename box, enter a name for the file to contain the signal data.
By default, the target computer writes the signal data to a file named
C:\data.dat.

Tip

• File names on the target computer are limited to 8 characters in length,
not counting the file extension. If the name is longer than 8 characters, the
software truncates it to 6 characters and adds ‘~1’ to the end of the filename.

• To configure the scope to generate multiple, dynamically named files in one
session, see “Log Signal Data into Multiple Files” on page 5-99.

• If you enter just the file name, the file appears in folder C:\. To put the
file in a folder, you must create the folder separately, for instance using
the target computer command line or using MATLAB language (see
xpctarget.fsbase.mkdir).

11 From the Mode list, select either Lazy or Commit. Both modes open a file,
write signal data to the file, then close that file at the end of the session. With
the Commit mode, each file write operation simultaneously updates the FAT
entry for the file. This mode is slower, but the file system knows the actual
file size after each write. With the Lazy mode, the FAT entry is updated only
when the file is closed and not during each file write operation. This mode is
faster, but if the system crashes before the file is closed, the file system might
not know the actual file size (the file contents, however, will be intact). If you
experience a system crash, you can expect to lose aWriteSize amount of data.

5-85

5 Signals and Parameters

12 In theWriteSize box, enter the block size, in bytes, of the data chunks. This
parameter specifies that a memory buffer of length Number of samples
write data to the file inWriteSize chunks. By default, this parameter is 512
bytes, the typical disk sector size. Using a block size that is the same as the
disk sector size improves performance.

If you experience a system crash, you can expect to lose a WriteSize amount
of data.

13 In the Number of samples box, enter the number of values to be acquired in
a data package.

14 Select the AutoRestart check box to enable the file scope to collect data up to
Number of samples, then start over again, appending the new data to the
end of the signal data file. Clear the AutoRestart check box to have the file
scope collect data up to Number of samples, then stop.

If the named signal data file already exists, the xPC Target software
overwrites the old data with the new signal data.

The file scope dialog box looks like this:

5-86

Log Signals with File Scope (xPC) Blocks

15 Click OK.

16 From the File menu, click Save As. The model is saved as my_xpc_osc2.

5-87

5 Signals and Parameters

File Scope Usage
• xPC Target supports eight file scopes. Each file scope can contain as many
signals as the target computer has resources to support them.

• With file scopes, the xPC Target software generates a signal data file on the
target computer after you run the target application. Saving signal data
to files is most useful when you are using target computers as standalone
xPC Target systems. To access the contents of the signal data file that a
file scope creates, use the xPC Target file system object (xpctarget.fs)
from a host computer MATLAB window. To view or examine the signal
data, you can use the readxpcfile utility in conjunction with the plot
function. For further details on the xpctarget.fs file system object and
the readxpcfile utility, see “Using xpctarget.fs Objects” on page 8-10.
Saving signal data to files lets you recover signal data from a previous run
in the event of system failure (such as a system crash).

The signal data file can quickly increase in size. You should examine the
file size between runs to gauge the growth rate for the file. If the signal
data file grows beyond the available space on the disk, the signal data
might be corrupted.

• For a file scope, the scope acquires data and writes it to the file named in
the FileName parameter in blocks of sizeWriteSize. The scope acquires
the first N samples into the memory buffer. This memory buffer is of
length Number of Samples. The memory buffer writes data to the file
inWriteSize chunks. If the AutoRestart check box is selected, the scope
then starts over again, overwriting the memory buffer. The additional
data is appended to the end of the existing file. If the AutoRestart box
is not selected, the scope collects data only up to the number of samples,
and then stops. The number of samples N to log after triggering an event
is equal to the value you entered in the Number of Samples parameter.
If you stop, then start the scope again, the data in the file is overwritten
with the new data.

Select the type of event in the Block Parameters: Scope (xPC) dialog box by
setting Trigger Mode to Signal Triggering, Software Triggering, or
Scope Triggering.

5-88

Log Signals with File Scopes Using xPC Target™ Explorer

Log Signals with File Scopes Using xPC Target Explorer
You can create a virtual file scope on the target computer using xPC Target
Explorer. These scopes have the full capabilities of the Scope (xPC) block in
File mode, but do not persist past the current execution.

Note For information on using file scope blocks, see “Log Signals with File
Scope (xPC) Blocks” on page 5-83 and “File Scope Usage” on page 5-88.

This procedure uses the model xpcosc as an example. It assumes you have
done the following setup:

1 Built and downloaded the target application to the target computer using

Simulink (on the toolbar)

2 Run xPC Target Explorer (command xpcexplr)

3 Connected to the target computer in the Targets pane (on the toolbar)

4 Set property Stop time to inf in the Applications pane (on the toolbar)

To configure a virtual file scope:

1 In the Scopes pane, expand the xpcosc node.

2 To add a file scope, select File Scopes and click the Add Scope icon on
the toolbar, or right-click node File Scopes and select Add File Scope.

Under node File Scopes is the new scope, for example Scope 1.

3 Expand Scope 1 and click the Properties icon on the toolbar, or
double-click Properties.

4 In the Scope Properties pane, click Signals.

Note Add signals from the Target Applications Signals workspace.

5-89

5 Signals and Parameters

5 In the Target Applications pane, expand the target application node
and then node Model Hierarchy.

6 Select the model node and click the View Signals icon on the toolbar, or
right-click the model name and click View Signals.

The Signals workspace opens, showing a table of signals with properties
and actions.

Note If a block is unnamed, xPC Target Explorer does not display signals
or a node for that block. To reference such a block, provide an alphanumeric
name for that block, rebuild and download the model to the target
computer, and reconnect the MATLAB session to the target computer.

7 In the Signals workspace, to add signal Signal Generator to Scope1,
click the down arrow next to the Scopes icon in its Actions column.

A list of scope types appears. Scope 1 appears under node File Scopes.

Tip

• You can also create a virtual file scope from this menu by clicking Add
Scope next to scope type File Scopes.

• For file scopes, you must stop the scope first before adding or removing
signals.

• To group signals, see “Create Signal Groups Using xPC Target Explorer”
on page 5-58.

8 Click the Add Signal(s) icon next to Scope1 under node File Scopes.

9 Add signal Integrator1 to Scope 1 in the same way.

10 In the Scope Properties pane, click File.

11 Enter a name in the File name text box, for example scope1.dat.

5-90

Log Signals with File Scopes Using xPC Target™ Explorer

Tip

• To configure file scopes, see “Configure File Scopes Using xPC Target
Explorer” on page 5-94.

• To configure data sampling, see “Configure Scope Sampling Using xPC
Target Explorer” on page 5-40.

• To configure scope triggering, see “Configure Interactive Scope
Triggering Using xPC Target Explorer” on page 5-44 and “Configure
Noninteractive Scope Triggering Using xPC Target Explorer” on page
5-48.

12 To start execution, click the target application and click the Start icon on
the toolbar, or right-click the target application and click Start.

13 To start Scope 1, click Scope 1 in the Scopes pane and click the Start
Scope icon on the toolbar, or right-click Scope 1 and click Start.

14 To stop Scope 1, click Scope 1 in the Scopes pane and click the Stop
Scope icon on the toolbar, or right-click Scope 1 and click Stop.

15 To stop execution, click the target application and click the Stop icon on
the toolbar, or right-click the target application and click Stop.

16 To view the file you generated, in the Targets pane, expand the target
computer, then double-click File System.

17 Select C:\. The dialog box looks like this:

5-91

5 Signals and Parameters

5-92

Log Signals with File Scopes Using xPC Target™ Explorer

Tip

• To rename file SCOPE1.DAT, right click the file name, select Rename,
type the new name in the text box, and click Enter.

• To delete file SCOPE1.DAT, right click the file name and select Delete.

18 To retrieve the file from the target computer for analysis, see “Using
xpctarget.fs Objects” on page 8-10

5-93

5 Signals and Parameters

Configure File Scopes Using xPC Target Explorer
You can configure your file scopes to facilitate data logging. You can configure
a file scope whether you created it by adding a Scope (xPC) block to your
model or by adding the scope at run time.

This procedure uses the model xpcosc as an example. It assumes that you
have gone through the procedure in “Log Signals with File Scopes Using xPC
Target Explorer” on page 5-89 and that execution and scopes are stopped.

1 Select Scope 1 and open the Properties pane (on the Scopes toolbar).

2 Click File in the Scope 1 Properties pane.

3 Enter a name in the File name text box, for example scope2.dat.

Tip

• File names on the target computer are limited to 8 characters in length,
not counting the file extension. If the name is longer than 8 characters,
the software truncates it to 6 characters and adds ‘~1’ to the end of the
filename.

• If you enter just the file name, the file appears in folder C:\. To put
the file in a folder, you must create the folder separately, for instance
using the target computer command line or using MATLAB language
(see xpctarget.fsbase.mkdir).

• If a file with this name already exists when you start the file scope, the
file scope overwrites the old data with the new data.

4 Select File mode Commit.

The default File mode is Lazy. In both Lazy and Commit mode, the kernel
opens a file, writes signal data to the file, and closes that file at the end
of the session. The differences are:

5-94

Configure File Scopes Using xPC Target™ Explorer

• In Commit mode, each file write operation simultaneously updates the
FAT entry for the file. This mode is slower than Lazy mode, but the file
system knows the actual file size after each write.

• In Lazy mode, the FAT entry is updated only when the file is closed
and not during each file write operation. This mode is faster than
Commit mode, but if the system crashes before the file is closed, the file
system might not know the actual file size, even though the contents
will be intact. If you experience a system crash, you can expect to lose
WriteSize bytes of data.

5 Select the AutoRestart check box.

• When AutoRestart is selected, the file scope collects data up to
Number of Samples, then restarts and appends the new data to the
end of the file.

• When AutoRestart is cleared, the file scope collects data up to Number
of Samples, then stops.

6 Leave the Dynamic File Mode check box cleared.

Tip For information on using Dynamic File Mode to generate multiple,
dynamically named files in one session, see “Log Signal Data into Multiple
Files” on page 5-99.

7 Leave Write Size set to the default value of 512.

Note The typical disk sector is 512 bytes. Using a block size that is the
same as the disk sector size improves performance.

8 Leave Max write file size set to the default value, which is a multiple of
Write Size.

9 Start execution (on the Applications toolbar).

10 Start Scope 1(on the Scopes toolbar).

5-95

5 Signals and Parameters

Let it run for up to a minute.

11 Stop Scope 1 (on the Scopes toolbar).

12 Stop execution (on the Applications toolbar).

The dialog box looks like this:

5-96

Configure File Scopes Using xPC Target™ Explorer

5-97

5 Signals and Parameters

Tip

• To rename file SCOPE2.DAT, right click the file name, select Rename,
type the new name in the text box, and click Enter.

• To delete file SCOPE2.DAT, right click the file name and select Delete.

13 To retrieve the file from the target computer for analysis, see “Using
xpctarget.fs Objects” on page 8-10

5-98

Log Signal Data into Multiple Files

Log Signal Data into Multiple Files
You can acquire signal data into multiple, dynamically named files on
the target computer. This allows you to examine one file while the scope
continues to acquire data into other files. To acquire data in multiple files,
add a file scope to the target application and configure that scope to log signal
data to multiple files.

This procedure assumes you are using model xpcosc and have carried out the
setup tasks in “Log Signals with File Scopes Using xPC Target Explorer”
on page 5-89

1 In xPC Target Explorer, in the Scopes pane, expand the xpcosc node.

2 Select File Scopes and expand node File Scopes.

3 Expand Scope 1 and click the Properties icon on the toolbar, or
double-click Properties.

4 In the Scope Properties pane, click File.

5 To enable the file scope to create multiple log files based on the same name,
in the File name box, enter a name like scope1_<%>.dat.

This sequence directs the software to create up to nine log files,
scope1_1.dat to scope1_9.dat, on the target computer file system.

Tip You can configure the file scope to create up to 99999999 files
(<%%%%%%%%>.dat). The length of a file name, including the specifier,
cannot exceed eight characters. See the Filename description in the
xpctarget.xpc.get (target application object) for more about this
specifier.

6 Select the AutoRestart and Dynamic File Mode check boxes.

7 In theMax write file size box, enter a value to limit the size of the signal
log files. For example, to limit each log file size to 4096 bytes, enter 4096.

5-99

5 Signals and Parameters

Note This value must be a multiple of theWrite Size value.

8 To start execution, click the target application and click the Start icon on
the toolbar, or right-click the target application and click Start.

9 To start Scope 1, click Scope 1 in the Scopes pane and click the Start
Scope icon on the toolbar, or right-click Scope 1 and click Start.

Let Scope 1 run for up to a minute.

10 To stop Scope 1, click Scope 1 in the Scopes pane and click the Stop
Scope icon on the toolbar, or right-click Scope 1 and click Stop.

11 To stop execution, click the target application and click the Stop icon on
the toolbar, or right-click the target application and click Stop.

12 To view the files you generated, in the Targets pane, expand the target
computer, then double-click File System.

13 Select C:\. The dialog box looks like this:

5-100

Log Signal Data into Multiple Files

5-101

5 Signals and Parameters

file size), the software closes SCOPE1_1.DAT and creates SCOPE1_2.DAT,
SCOPE1_3.DAT, and so on until it fills the last log file, SCOPE1_9.DAT. If
the target application continues to collect data after the software closes
SCOPE1_9.DAT, the software reopens SCOPE1_1.DAT, SCOPE1_2.DAT, and so
on, overwriting the existing contents.

14 To retrieve the file from the target computer for analysis, see “Using
xpctarget.fs Objects” on page 8-10

5-102

Log Signals Using Outport with xPC Target™ Explorer

Log Signals Using Outport with xPC Target Explorer
To use xPC Target Explorer for signal logging, you need to add an
Outport block to your Simulink model and activate logging on the Data
Import/Export pane in the Configuration Parameters dialog box.

This procedure begins with tutorial model xpc_osc3:

1 In the MATLAB window, type xpc_osc3.

The xpc_osc3 model opens.

2 In the Simulink window, select and delete the xPC Target Scope block
and its connecting signal.

3 Click Simulation > Model Configuration Parameters

4 Select node Data Import/Export.

5 Select the Signal logging check box.

6 In Signal logging format, select value Dataset.

The dialog box looks like this:

5-103

5 Signals and Parameters

7 From the File menu, click Save as. Enter xpc_osc4 and then click Save.

8 Click OK.

9 In the Simulink window, click the Build Model icon on the toolbar or
click Code > C/C++ Code > Build Model.

10 Run xPC Target Explorer using command xpcexplr.

11 Connect to the target computer in the Targets pane using the Connect
node on the toolbar.

5-104

Log Signals Using Outport with xPC Target™ Explorer

12 To start execution, click the target application and click the Start icon on
the toolbar, or right-click the target application and click Start.

The outputs are the signals connected to Simulink Outport blocks. The
model xpcosc has just one Outport block, labeled 1, and there are two
states. This Outport block shows the signals leaving the blocks labeled
Integrator1 and Signal Generator.

13 To stop execution, click the target application and click the Stop icon on
the toolbar, or right-click the target application and click Stop.

14 Plot the signals from the Outport block and the states. In the MATLAB
window, type

plot(tg.TimeLog,tg.Outputlog)

Values for the logs are uploaded to the host computer from the target
application on the target computer. If you want to upload part of the logs,
see the target object method xpctarget.xpc.getlog.

The plotted output looks like this:

5-105

5 Signals and Parameters

5-106

Log Signals Using Outport with MATLAB® Language

Log Signals Using Outport with MATLAB Language
You plot the outputs and states of your target application to observe the
behavior of your model, or to determine the behavior when you vary the input
signals and model parameters.

Time, states, and outputs — Logging the output signals is possible only
if you add Outport blocks to your Simulink model before the build process,
and select the Save to workspace check box in the Data Import/Export
pane of the Configuration Parameters dialog box. See “Configure Simulation
Parameters”.

Task execution time— Plotting the task execution time is possible only if
you select the Log Task Execution Time check box in the xPC Target
options pane of the Configuration Parameters dialog box. This check box is
selected by default. See “Add xPC Target Scope Block”.

All scopes copy the last N samples from the log buffer to the target object
logs (tg.TimeLog, tg.OutputLog, tg.StateLog, and tg.TETLog). The xPC
Target software calculates the number of samples N for a signal as the value
of Signal logging buffer size in doubles divided by the number of logged
signals (1 time, 1 task execution time ([TET]), outputs, states).

After you run a target application, you can plot the state and output signals.
This procedure uses the Simulink model xpc_osc4 as an example, and
assumes you have created and downloaded the target application for that
model. It also assumes that you have assigned tg to the target computer.

1 In the MATLAB window, type

tg=xpc

2 Type

+tg

or

tg.start

or

5-107

5 Signals and Parameters

start(tg)

The target application starts and runs until it reaches the final time set in
the target object property tg.StopTime.

The outputs are the signals connected to Simulink Outport blocks. The
model xpcosc has just one Outport block, labeled 1, and there are two
states. This Outport block shows the signals leaving the blocks labeled
Integrator1 and Signal Generator.

3 Plot the signals from the Outport block and the states. In the MATLAB
window, type

plot(tg.TimeLog,tg.Outputlog)

Values for the logs are uploaded to the host computer from the target
application on the target computer. If you want to upload part of the logs,
see the target object method xpctarget.xpc.getlog.

5-108

Log Signals Using Outport with MATLAB® Language

The plot shown below is the result of a real-time execution. To compare
this plot with a plot for a non-real-time simulation, see “Simulate Simulink
Model Using MATLAB Language”.

4 In the MATLAB window, type

plot(tg.TimeLog,tg.TETLog)

Values for the task execution time (TET) log are uploaded to the host
computer from the target computer. If you want to upload part of the logs,
see the target object method xpctarget.xpc.getlog.

5-109

5 Signals and Parameters

The TET plot shown below is the result of a real-time run.

The TET is the time to calculate the signal values for the model during
each sample interval. If you have subsystems that run only under certain
circumstances, plotting the TET would show when subsystems were
executed and the additional CPU time required for those executions.

5 In the MATLAB window, type either

tg.AvgTET

or

get(tg,'AvgTET')

5-110

Log Signals Using Outport with MATLAB® Language

The MATLAB interface displays the following information about the
average task execution time.

ans =
5.7528e-006

The percentage of CPU performance is the average TET divided by the
sample time.

Note that each outport has an associated column vector in tg.OutputLog.
You can access the data that corresponds to a particular outport by specifying
the column vector for that outport. For example, to access the data that
corresponds to Outport 2, use tg.outputlog(:,2).

5-111

5 Signals and Parameters

Log Signals with File Scopes Using MATLAB Language
This procedure uses the Simulink model xpcosc as an example, and assumes
you have built the target application for this model. It also assumes that
you have a serial communication connection. This topic describes how to
trace signals with file scopes .

Note The signal data file can quickly increase in size. You should examine
the file size between runs to gauge the growth rate of the file. If the signal
data file grows beyond the available space on the disk, the signal data might
be corrupted.

1 Create an xPC Target application that works with file scopes. Type

tg=xpctarget.xpc('rs232', 'COM1', '115200')

2 To get a list of signals, type either

set(tg, 'ShowSignals', 'on')

or

tg.ShowSignals='on'

The MATLAB window displays a list of the target object properties for
the available signals. For example, the signals for the model xpcosc are
shown below.

ShowSignals = on
Signals = INDEX VALUE BLOCK NAME LABEL

0 0.000000 Integrator1
1 0.000000 Signal Generator
2 0.000000 Gain
3 0.000000 Integrator
4 0.000000 Gain1
5 0.000000 Gain2
6 0.000000 Sum

5-112

Log Signals with File Scopes Using MATLAB® Language

For more information, see “Monitor Signals with MATLAB Language”
on page 5-9.

3 Start running your target application. Type

+tg

or

tg.start

or

start(tg)

The target computer displays the following message:

System: execution started (sample time: 0.0000250)

4 Create a scope to be displayed on the target computer. For example, to
create a scope with an identifier of 2 and a scope object name of sc2, type

sc2=tg.addscope('file', 2)

or

sc2=addscope(tg, 'file', 2)

5 List the properties of the scope object. For example, to list the properties of
the scope object sc2, type

sc2

The MATLAB window displays a list of the scope object properties. Notice
that the scope properties Time and Data are not accessible with a target
scope.

xPC Scope Object
Application = xpcosc
ScopeId = 2
Status = Interrupted
Type = File
NumSamples = 250

5-113

5 Signals and Parameters

NumPrePostSamples = 0
Decimation = 1
TriggerMode = FreeRun
TriggerScope = 2
TriggerSample = 0
TriggerSignal = -1
TriggerLevel = 0.000000
TriggerSlope = Either
ShowSignals = off
FileName = unset
Mode = Lazy
WriteSize = 512
AutoRestart = off
DynamicFileName = off
MaxWriteFileSize = 536870912

Note that there is no name initially assigned to FileName. After you start
the scope, xPC Target assigns a name for the file to acquire the signal data.
This name typically consists of the scope object name, ScopeId, and the
beginning letters of the first signal added to the scope.

6 Add signals to the scope object. For example, to add Integrator1 and
Signal Generator, type

sc2.addsignal ([4,5])

or

addsignal(sc2,[4,5])

The target computer displays the following messages.

Scope: 2, signal 4 added
Scope: 2, signal 5 added

After you add signals to a scope object, the file scope does not acquire
signals until you start the scope.

7 Start the scope. For example, to start the scope sc2, type

+sc2

5-114

Log Signals with File Scopes Using MATLAB® Language

or

sc2.start

or

start(sc2)

The MATLAB window displays a list of the scope object properties. Notice
that FileName is assigned a default filename to contain the signal data
for the file scope. This name typically consists of the scope object name,
ScopeId, and the beginning letters of the first signal added to the scope.

Application = xpcosc
ScopeId = 2
Status = Pre-Acquiring
Type = File
NumSamples = 250
NumPrePostSamples = 0
Decimation = 1
TriggerMode = FreeRun
TriggerScope = 2
TriggerSample = 0
TriggerSignal = 4
TriggerLevel = 0.000000
TriggerSlope = Either
ShowSignals = on
Signals = 4 : Integrator1

5 : Signal Generator
FileName = c:\sc7Integ.dat
Mode = Lazy
WriteSize = 512
AutoRestart = off
DynamicFileName = off
MaxWriteFileSize = 536870912

8 Stop the scope. Type

-sc2

or

5-115

5 Signals and Parameters

sc2.stop

or

stop(sc2)

9 Stop the target application. In the MATLAB window, type

-tg

or

tg.stop

or

stop(tg)

The target application on the target computer stops running, and the target
computer displays messages similar to the following.

minimal TET: 0.00006 at time 0.004250
maximal TET: 0.000037 at time 14.255250

To access the contents of the signal data file that the file scope creates, use
the xPC Target file system object (xpctarget.fs) from the host computer
MATLAB window. To view or examine the signal data, you can use the
readxpcfile utility with the plot function. For further details on the
xpctarget.fs file system object and the readxpcfile utility, see “Using
xpctarget.fs Objects” on page 8-10.

5-116

Log Signals with a Web Browser

Log Signals with a Web Browser
When you stop the model execution, another section of the Web browser
interface appears that enables you to download logging data. This data is
in comma-separated value (CSV) format. This format can be read by most
spreadsheet programs and also by the MATLAB interface using the dlmread
function.

This section of the Web browser interface appears only if you have enabled
data logging, and buttons appear only for those logs (states, output, and TET)
that are enabled. If time logging is enabled, the first column of the CSV file
is the time at which data (states, output, and TET values) was acquired. If
time logging is not enabled, only the data is in the CSV file, without time
information.

You analyze and plot the outputs and states of your target application to
observe the behavior of your model, or to determine the behavior when you
vary the input signals.

Time, states, and outputs — You can log output signals only if you add Outport
blocks to your Simulink model and select the Save to workspace check
boxes in the Data Import/Export node of the Configuration Parameters
dialog box before building the model. See “Configure Simulation Parameters”.

Task execution time — You can log task execution time only if you select the
Log Task Execution Time check box in the xPC Target options node of the
Configuration Parameters dialog box. This check box is selected by default.

5-117

5 Signals and Parameters

Parameter Tuning Basics
By default, the xPC Target software lets you change parameters in your
target application while it is running in real time.

Note Some parameters are not observable. See “Nonobservable Signals and
Parameters” on page 5-148.

You can improve overall efficiency by inlining parameters. The xPC Target
product supports the Simulink Coder inline parameters functionality (see the
Simulink Coder documentation for further details on inlined parameters). By
default, this functionality makes all parameters nontunable. If you want to
make some of the inlined parameters tunable, you can do so through the
Model Parameter Configuration dialog box (see “Configure to Tune Inlined
Parameters” on page 5-138).

5-118

Tune Parameters with xPC Target™ Explorer

Tune Parameters with xPC Target Explorer
You can use xPC Target Explorer to change parameters in your target
application while it is running in real time or between runs. You do not need
to rebuild the Simulink model, set the Simulink interface to external mode, or
connect the Simulink interface with the target application.

This procedure assumes you are using model xpcosc and have carried out the
setup tasks in “Trace Signals with Host Scopes Using xPC Target Explorer”
on page 5-62.

1 Select the target application in the Applications pane (for example,
xpcosc).

2 To start execution, click the target application and click the Start icon on
the toolbar, or right-click the target application and click Start.

3 To start Scope 1, click Scope 1 in the Scopes pane and click the Start
Scope icon on the toolbar, or right-click Scope 1 and click Start.

The dialog box looks like this:

5-119

5 Signals and Parameters

5-120

Tune Parameters with xPC Target™ Explorer

4 In the Target Applications pane, expand the target application node
and then node Model Hierarchy.

5 Select the model node and click the View Parameters icon on the
toolbar, or right-click the model name and click View Block Parameters.

The Parameters workspace opens, showing a table of parameters with
properties and actions.

6 Click on the arrow next to the Gain for block Gain1.

The Values text box opens, containing the initial value 400.

7 Type 100 into the text box, then click outside the box.

Tip

• To revert the Gain for block Gain1 to its previous value, click the Revert
icon .

• To group parameters, see “Create Parameter Groups Using xPC Target
Explorer” on page 5-124

8 Click the Apply parameter value(s) changes icon .

The target computer screen looks like this:

5-121

5 Signals and Parameters

5-122

Tune Parameters with xPC Target™ Explorer

9 To stop Scope 1, click Scope 1 in the Scopes pane and click the Stop
Scope icon on the toolbar, or right-click Scope 1 and click Stop.

10 To stop execution, click the target application and click the Stop icon on
the toolbar, or right-click the target application and click Stop.

5-123

5 Signals and Parameters

Create Parameter Groups Using xPC Target Explorer
When testing a complex model composed of many reference models, you will
frequently be required to tune parameters from multiple parts and levels of
the model. To do this, create a parameter group.

This procedure uses the model xpcosc as an example. It assumes you have
done the following setup:

1 Built and downloaded the target application to the target computer using

Simulink (on the toolbar)

2 Run xPC Target Explorer (command xpcexplr)

3 Connected to the target computer in the Targets pane (on the toolbar)

To create a parameter group:

• In the Target Applications pane, expand the target application node and
right-click node Groupings.

• Click New Parameter Group.

The Add New Parameter Group Item dialog box appears.

• Enter a name, for example ParamGroup1.par, in the Name text box.
Enter a folder for the group file in the Location text box.

• Click OK.

A new parameter group appears, along with its Parameter Group
workspace.

• In the Target Applications pane, expand the target application node
and then node Model Hierarchy.

• Select the model node and click the View Parameters icon on the
toolbar, or right-click the model name and click View Block Parameters.

The Parameters workspace opens, showing a table of parameters with
properties and actions.

5-124

Create Parameter Groups Using xPC Target™ Explorer

• In the Parameter Groups workspace, to add parameter Amplitude to
ParamGroup1.par, click the down arrow next to the Parameters
Grouping icon in its Actions column.

A list of parameter groups appears, including ParamGroup1.par.

• Click the Add Parameter icon next to ParamGroup1.par.

• Add parameter Frequency to ParamGroup1.par in the same way.

• Click in the Parameter Group workspace, then click the Save icon on
the toolbar, or click File > Save.

The dialog box looks like this:

5-125

5 Signals and Parameters

5-126

Create Parameter Groups Using xPC Target™ Explorer

Tip To make both workspaces visible at the same time, click and hold the
tab for one workspace and drag it down until the following icon appears in

the middle of the dialog box: . Continue to drag until the cursor reaches
the required quadrant, then release the mouse button.

You can now tune each of the individual parameters in the selected group.
For more on how to do this, see “Tune Parameters with xPC Target Explorer”
on page 5-119.

5-127

5 Signals and Parameters

Tune Parameters Using MATLAB Language
You use the MATLAB functions to change block parameters. With these
functions, you do not need to set the Simulink interface to external mode, and
you do not need to connect the Simulink interface with the target application.

You can download parameters to the target application while it is running
or between runs. This feature lets you change parameters in your target
application without rebuilding the Simulink model.

After you download a target application to the target computer, you can
change block parameters using xPC Target functions. This procedure uses
the Simulink model xpcosc as an example, and assumes you have created
and downloaded the target application for that model. It also assumes that
you have assigned tg to the target computer.

1 In the MATLAB window, type

+tg

or

tg.start

or

start(tg)

The target computer displays the following message:

System: execution started (sample time: 0.001000)

2 Display a list of parameters. Type either

set(tg,'ShowParameters','on')

or

tg.ShowParameters='on'

The latter command displays a list of properties for the target object.

5-128

Tune Parameters Using MATLAB® Language

ShowParameters = on

Parameters =

INDEX VALUE TYPE SIZE
PARAMETER
NAME

BLOCK
NAME

0 1000000 DOUBLE Scalar Gain Gain

1 400 DOUBLE Scalar Gain Gain1

2 1000000 DOUBLE Scalar Gain Gain2

3 0 DOUBLE Scalar
Initial
Condition Integrator

4 0 DOUBLE Scalar Initial
Condition

Integrator1

5 4 DOUBLE Scalar Amplitude Signal
Generator

6 20 DOUBLE Scalar Frequency Signal
Generator

3 Change the gain. For example, to change the Gain1 block, type either

tg.setparam(1,800)

or

setparam(tg,1,800)

As soon as you change parameters, the changed parameters in the target
object are downloaded to the target application. The host computer displays
the following message:

ans =
parIndexVec: 1
OldValues: 400
NewValues: 800

The target application runs and the plot frame updates the signals for
any active scopes.

5-129

5 Signals and Parameters

4 Stop the target application. In the MATLAB window, type

-tg

or

tg.stop

or

stop(tg)

The target application on the target computer stops running, and the target
computer displays messages like the following:

minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

Note Method names are case sensitive and need to be complete, but property
names are not case sensitive and need not be complete as long as they are
unique.

Reset Target Application Parameters to Previous
Values
You can reset parameters to preceding target object property values by using
xPC Target methods on the host computer. The setparam method returns a
structure that stores the parameter index, the previous value, and the new
value. If you expect to want to reset parameter values, set the setparam
method to a variable. This variable points to a structure that stores the
parameter index and the old and new parameter values for it.

1 In the MATLAB window, type

pt=tg.setparam(1,800)

The setparam method returns a result like

pt =
parIndexVec: 1

5-130

Tune Parameters Using MATLAB® Language

OldValues: 400
NewValues: 800

2 To reset to the previous values, type

setparam(tg,pt.parIndexVec,pt.OldValues)
ans =
parIndexVec: 5
OldValues: 800
NewValues: 100

5-131

5 Signals and Parameters

Tune Parameters with Simulink External Mode
You use Simulink external mode to connect your Simulink block diagram to
your target application. The block diagram becomes a graphical user interface
to your target application. You set up the Simulink interface in external mode
to establish a communication channel between your Simulink block window
and your target application.

In Simulink external mode, wherever you change parameters in the Simulink
block diagram, the Simulink software downloads those parameters to
the target application while it is running. This feature lets you change
parameters in your program without rebuilding the Simulink model to create
a new target application.

After you download your target application to the target computer, you can
connect your Simulink model to the target application. This procedure uses
the Simulink model xpcosc as an example, and assumes you have created
and downloaded the target application for that model.

1 In the Simulink window, click Simulation > Mode > External.

A check mark appears next to the menu item External, and Simulink
external mode is activated.

2 Click Simulation > Connect To Target or click the Connect To Target

icon on the toolbar.

All of the current Simulink model parameters are downloaded from the
host computer to your target application.

3 Do one of the following:

• Click Simulation > Run.

• Click the Run icon on the toolbar.

• In the MATLAB window, type:

+tg

or

5-132

Tune Parameters with Simulink® External Mode

tg.start

or

start(tg)

The target application begins running on the target computer, and the
target computer displays the following message:

System: execution started (sample time: 0.000250)

4 From the Simulation block diagram, double-click the block labeled Gain1.

The Block Parameters: Gain1 parameter dialog box opens.

5 In the Gain text box, enter 800 and click OK.

As soon as you change a model parameter and click OK, or you click the
Apply button on the Block Parameters: Gain1 dialog box, all the changed
parameters in the model are downloaded to the target application.

6 From the Simulation menu, click Disconnect from Target.

The Simulink model is disconnected from the target application. Now, if you
change a block parameter in the Simulink model, there is no effect on the
target application. Connecting and disconnecting the Simulink interface
works regardless of whether the target application is running or not.

7 In the MATLAB window, type either

stop(tg)

or

-tg

The target application on the target computer stops running, and the target
computer displays the following messages:

minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

5-133

5 Signals and Parameters

Tune Parameters with a Web Browser
The Parameters pane displays a list of all the tunable parameters in your
model. Row and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target computer, you can use the
Parameters page to change parameters in your target application while it is
running in real time:

1 In the left frame, click the Parameters button.

The browser loads the Parameter List pane into the right frame.

If the parameter is a scalar parameter, the current parameter value is
shown in a box that you can edit.

If the parameter is a vector or matrix, there is a button that takes you to
another page that displays the vector or matrix and enables you to edit
the parameter.

2 Enter a new parameter value into one or more of the parameter boxes,
and then click the Apply button.

The new parameter values are uploaded to the target application.

5-134

Save and Reload Parameters with MATLAB® Language

Save and Reload Parameters with MATLAB Language
After you have a set of target application parameter values that you are
satisfied with, you can save those values to a file on the target computer.
You can then later reload these saved parameter values to the same target
application. You can save parameters from your target application while the
target application is running or between runs. This feature lets you save
and restore parameters in your target application without rebuilding the
Simulink model. You save and restore parameters with the target object
methods saveparamset and loadparamset.

The procedures assume that

• You have a target application object named tg.

• You have assigned tg to the target computer.

• You have downloaded a target application to the target computer.

• You have parameters you would like to save for reuse. See

- “Tune Parameters Using MATLAB Language” on page 5-128

- “Tune Parameters with Simulink External Mode” on page 5-132

- “Tune Parameters with a Web Browser” on page 5-134

Save the Current Set of Target Application Parameters
To save a set of parameters to a target application, use the saveparamset
method. The target application can be stopped or running.

1 Identify the set of parameter values you want to save.

2 Select a descriptive filename to contain these values. For example, use the
model name in the filename. You can only load parameter values to the
same target application from which you saved the parameter values.

3 In the MATLAB window, type either

tg.saveparamset('xpc_osc4_param1')

or

5-135

5 Signals and Parameters

saveparamset(tg,'xpc_osc4_param1')

The xPC Target software creates a file named xpcosc4_param1 in the
current folder of the target computer, for example, C:\xpcosc4_param1.

For a description of how to restore parameter values to a target application,
see “Load Saved Parameters to a Target Application” on page 5-136. For a
description of how to list the parameters and values stored in the parameter
file, see “List the Values of the Parameters Stored in a File” on page 5-137.

Load Saved Parameters to a Target Application
To load a set of saved parameters to a target application, use the
loadparamset method. You must load parameters to the same model from
which you save the parameter file. If you load a parameter file to a different
model, the behavior is undefined.

This section assumes that you have a parameters file saved from an earlier
run of saveparamset (see “Save the Current Set of Target Application
Parameters” on page 5-135).

1 From the collection of parameter value files on the target computer, select
the one that contains the parameter values you want to load.

2 In the MATLAB window, type either

tg.loadparamset('xpc_osc4_param1')

or

loadparamset(tg,'xpc_osc4_param1')

The xPC Target software loads the parameter values into the target
application.

Tip To enable the software to load the parameter set automatically during
startup, see “Load a parameter set from a file on the designated target file
system”.

5-136

Save and Reload Parameters with MATLAB® Language

For a description of how to list the parameters and values stored in the
parameter file, see “List the Values of the Parameters Stored in a File” on
page 5-137.

List the Values of the Parameters Stored in a File
To list the parameters and their values, load the file for a target application,
then turn on the ShowParameters target object property.

This section assumes that you have a parameters file saved from an earlier
run of saveparamset (see “Save the Current Set of Target Application
Parameters” on page 5-135).

1 Stop the target application. For example, type

tg.stop

2 Load the parameter file. For example, type

tg.loadparamset('xpc_osc4_param1');

3 Display a list of parameters. For example, type

tg.ShowParameters='on';

and then type

tg

The MATLAB window displays a list of parameters and their values for
the target object.

5-137

5 Signals and Parameters

Configure to Tune Inlined Parameters
This procedure describes how you can globally inline parameters for a model,
then specify which of these parameters you still want to be tunable.

Note You cannot tune inlined parameters that are structures.

The following procedure uses the Simulink model xpcosc as an example.

1 In the MATLAB Command Window, type xpcosc.

The model is displayed in the Simulink window.

2 Select the blocks of the parameters you want to make tunable. For example,
this procedure makes the signal generator’s amplitude parameter tunable.
Use the variable A to represent the amplitude.

3 Double-click the Signal Generator block and enter A for the Amplitude
parameter. Click OK.

4 In the MATLAB Command Window, assign a constant to that variable.
For example, type

A = 4

The value is displayed in the MATLAB workspace.

5 From the Simulink window, click Simulation > Model Configuration
Parameters.

The Configuration Parameters dialog box for the model opens.

6 Select the Signals and Parameters node under Optimization.

7 In the right pane, select the Inline parameters check box.

The Configure button is enabled.

8 Click the Configure button.

5-138

Configure to Tune Inlined Parameters

The Model Parameter Configuration dialog box is displayed. Note that the
MATLAB workspace contains the constant you assigned to A.

9 Select the line that contains your constant and click Add to table.

The Model Parameter Configuration dialog box looks like this:

If there are more global parameters you want to be able to tune, add them
also.

10 Click Apply, then click OK.

11 In the Configuration Parameters dialog, click Apply, then OK.

5-139

5 Signals and Parameters

12 Save the model. For example, save it as xpc_osc5.

13 Build and download the model to your target computer.

14 To tune inline parameters, use one of:

• “Tune Inlined Parameters with xPC Target Explorer” on page 5-141

• “Tune Inlined Parameters with MATLAB Language” on page 5-146

5-140

Tune Inlined Parameters with xPC Target™ Explorer

Tune Inlined Parameters with xPC Target Explorer
This procedure describes how you can tune inlined parameters through the
xPC Target Explorer.

This procedure uses the model xpc_osc5 from topic “Configure to Tune
Inlined Parameters” on page 5-138 as an example. It assumes you have
applied the setup tasks in “Trace Signals with Host Scopes Using xPC Target
Explorer” on page 5-62 to that model.

1 Select the target application in the Applications pane (for example,
xpc_osc5).

2 To start execution, click the target application and click the Start icon on
the toolbar, or right-click the target application and click Start.

3 To start Scope 1, click Scope 1 in the Scopes pane and click the Start
Scope icon on the toolbar, or right-click Scope 1 and click Start.

The dialog box looks like this:

5-141

5 Signals and Parameters

5-142

Tune Inlined Parameters with xPC Target™ Explorer

4 In the Target Applications pane, expand the target application node
and then node Model Hierarchy.

5 Select the model node and click the View Parameters icon on the
toolbar, or right-click the model name and click View Block Parameters.

The Parameters workspace opens, showing a table of parameters with
properties and actions.

6 Click on the arrow next to parameter A for block Model Parameters.

The Values text box opens, containing the initial value 4.

7 Type 2 into the text box, then click outside the box.

8 Click the Apply parameter value(s) changes icon .

The target computer screen looks like this:

5-143

5 Signals and Parameters

5-144

Tune Inlined Parameters with xPC Target™ Explorer

9 To revert parameter A for block Model Parameters to its previous value,
click the Revert icon .

10 To stop Scope 1, click Scope 1 in the Scopes pane and click the Stop
Scope icon on the toolbar, or right-click Scope 1 and click Stop.

11 To stop execution, click the target application and click the Stop icon on
the toolbar, or right-click the target application and click Stop.

5-145

5 Signals and Parameters

Tune Inlined Parameters with MATLAB Language
This procedure describes how you can tune inlined parameters through the
MATLAB interface. It assumes that you have built and downloaded the model
from the topic “Configure to Tune Inlined Parameters” on page 5-138 to the
target computer. It also assumes that the model is running.

You can tune inlined parameters using a parameter ID as you would
conventional parameters.

• Use the getparamid function to get the ID of the inlined parameter you
want to tune. For the block_name parameter, leave a blank ('').

• Use the setparam function to set the new value for the inlined parameter.

1 Save the following code in a MATLAB file. For example, change_inlineA.

tg=xpc; %Create xPC Target object
pid=tg.getparamid('','A'); %Get parameter ID of A
if isempty(pid) %Check value of pid.

error('Could not find A');
end
tg.setparam(pid,100); %If pid is valid, set parameter value.

2 Execute that MATLAB file. For example, type

change_inlineA

3 To see the new parameter value, type

tg.showparameters='on'

The tg object information is displayed, including the parameter lines:

NumParameters = 1

ShowParameters = on

Parameters = INDEX VALUE TYPE SIZE PARAMETER NAME BLOCK
NAME

5-146

Tune Inlined Parameters with MATLAB® Language

0 100 DOUBLE Scalar A

5-147

5 Signals and Parameters

Nonobservable Signals and Parameters
Observable signals are those you can monitor, trace, and log. Nonobservable
signals are those that exist in the target application, but are not observable
from the host computer.

You cannot observe the following types of signals:

• Virtual or bus signals (including all signals from bus and virtual blocks).
You can access these signals from nonvirtual source blocks.

Tip

- To observe a virtual signal, add a Gain block with gain 1.0 (unit gain)
and observe its output.

- To observe a virtual bus, add a Gain block with unit gain to each
individual signal.

• Signals that you have optimized with block reduction optimization. You
can access these signals by making them test points.

• Signals of complex or multiword data types.

Observable parameters are those you can tune. Nonobservable parameters
are those that exist in the target application, but are not tunable from the
host computer. You cannot observe the parameters of complex or multiword
data types.

5-148

6

Execution Modes

• “Execution Modes” on page 6-2

• “Interrupt Mode” on page 6-3

• “Polling Mode” on page 6-5

6 Execution Modes

Execution Modes
Interrupt mode is the default real-time execution mode for the xPC Target
kernel. In certain conditions, you might want to change the real-time
execution mode to polling mode. A good understanding of interrupt and
polling modes will help you to use them effectively, and to decide under which
circumstances it makes sense for you to switch to the polling mode.

A third execution mode, freerun, is also available. In this mode, the target
application thread does not wait for the timer and the kernel runs the
application as fast as possible. The time between each execution might vary if
the target application has any conditional code. The three execution modes
are mutually exclusive. For a description of how to use the freerun mode,
see “Set Configuration Parameters”.

6-2

Interrupt Mode

Interrupt Mode
Interrupt mode is the default real-time execution mode for the kernel. This
mode provides the greatest flexibility and is the mode you should choose
for any application that executes at the given base sample time without
overloading the CPU.

The scheduler implements real-time single-tasking and multitasking
execution of single-rate or multirate systems, including asynchronous events
(interrupts). Additionally, background tasks like host-target communication
or updating the target screen run in parallel with sample-time-based model
tasks. This allows you to interact with the target system while the target
application is executing in real time at high sample rates. This is made
possible by an interrupt-driven real-time scheduler that is responsible for
executing the various tasks according to their priority. The base sample time
task can interrupt any other task (larger sample time tasks or background
tasks) and execution of the interrupted tasks resumes as soon as the base
sample time task completes operation. This gives a quasi parallel execution
scheme with consideration to the priorities of the tasks.

Latencies Introduced by Interrupt Mode
Compared to other modes, interrupt mode has more advantages. The
exception is the disadvantage of introducing a constant overhead, or latency,
that reduces the minimal possible base sample time to a constant number.
The overhead is the sum of various factors related to the interrupt-driven
execution scheme and can be referred to as overall interrupt latency. The
overall latency consists of the following parts, assuming that the currently
executing task is not executing a critical section and has therefore not
disabled any interrupt sources:

• Interrupt controller latency — In a PC-compatible system the interrupt
controller is not part of the x86-compatible CPU but part of the CPU chip
set. The controller is accessed over the I/O-port address space, which
introduces a read or write latency of about 1 µs for each 8–bit/16–bit register
access. Because the CPU has to check for the interrupt line requesting an
interrupt, and the controller has to be reset after the interrupt has been
serviced, a latency of about 5 µs is introduced for the interrupt controller.

6-3

6 Execution Modes

• CPU hardware latency — Modern CPUs try to predict the next couple of
instructions, including branches, by the use of instruction pipelines. If
an interrupt occurs, the prediction fails and the pipeline has to be fully
reloaded. This process introduces an additional latency. Additionally,
because of interrupts, cache misses will occur.

• Interrupt handler entry and exit latency — Because an interrupt can
stop the currently executing task at any instruction and the interrupted
task has to resume when the interrupting task completes execution, its
state has to be saved and restored accordingly. This includes saving CPU
data and address registers, including the stack pointer. In the case that
the interrupted task executed floating-point unit (FPU) operations, the
FPU stack has to be saved as well (108 bytes on a Pentium CPU). This
introduces additional latency.

• Interrupt handler content latency — If a background task has been
executing for some time, say in a loop, its data will be available in the cache.
When an interrupt occurs and the interrupt service handler is executed,
the interrupt handler data might no longer be in the cache, causing the
CPU to reload it from slower RAM. This introduces additional latency.
Because of its unpredictable nature, an interrupt generally reduces the
optimal execution speed or introduces latency,.

The kernel in interrupt mode is close to optimal for executing code on a
PC-compatible system. However, interrupt mode introduces an overall
latency of about 8 µs. This is a significant amount of time when considering
that a 1 GHz CPU can execute thousands of instructions within 8 µs. This
time is equivalent to a Simulink model containing a hundred nontrivial
blocks. Additionally, because lower priority tasks have to be serviced as well,
at least 5% of headroom is required, which can cause additional cache misses
and therefore nonoptimal execution speed.

6-4

Polling Mode

Polling Mode
Polling mode for the kernel is designed to execute target applications at
sample times close to the limit of the hardware (CPU). Using polling mode
with high-speed and low-latency I/O boards and drivers allows you to achieve
smaller sample times for applications that you cannot achieve using the
interrupt mode of the xPC Target software.

Polling mode has two main applications:

• Control applications — Control applications of average model size and I/O
complexity that are executed at very small sample times (Ts = 5 to 50 µs)

• DSP applications — Sample-based DSP applications (mainly audio and
speech) of average model size and I/O complexity that are executed at very
high sample rates (Fs = 20 to 200 kHz)

Introducing Polling Mode
Polling mode for the kernel does not have the 8 µs of latency that interrupt
mode does. This is because the kernel does not allow interrupts at all, so the
CPU can use this extra time for executing model code.

Polling mode is sometimes seen as a “primitive” or “brute force” real-time
execution scheme. Nevertheless, when a real-time application executes at a
given base sample time in interrupt mode and overloads the CPU, switching
to polling mode is often the only alternative to get the application to execute
at the required sample time.

Polling means that the kernel waits in an empty while loop until the time
at which the next model step has to be executed is reached. Then the next
model step is executed. At least a counter implemented in hardware has
to be accessible by the kernel in order to get a base reference for when the
next model step execution has to commence. The kernel polls this hardware
counter. If this hardware counter must be outside the CPU, e.g., in the chip
set or even on an ISA or PCI board, the counter value can only be retrieved
by an I/O or memory access cycle that again introduces latency. This latency
usually eats up the freed-up time of polling mode. Fortunately, since the
introduction of the Pentium CPU family from Intel, the CPU is equipped with
a 64 bit counter on the CPU substrate itself, which commences counting at
power-up time and counts up driven by the actual clock rate of the CPU.

6-5

6 Execution Modes

Even a highly clocked CPU is not likely to lead to an overflow of a 64 bit
counter (2^64 * 1e-9 (1 GHz CPU) = 584 years). The Pentium counter comes
with the following features:

• More precise measurements — Because the counter counts up with the
CPU clock rate (~1 GHz nowadays), time measurements even in the
microsecond range are very precise, leading to small real-time errors.

• Overflow handler not required— Because the counter is 64 bits wide, in
practical use overflow does not occur, avoiding the CPU-time overhead of
handling overflows.

• Minimal latency — The counter resides on the CPU. Reading the counter
value can be done within one CPU cycle, introducing minimal latency.

The polling execution scheme does not depend on any interrupt source to
notify the code to continue calculating the next model step. While this frees
the CPU, it means that any code that is part of the exclusively running
polling loop is executed in real time, even components, which have so far been
executed in background tasks. Because these background tasks are usually
non-real-time tasks and can use a lot of CPU time, do not execute them. This
is the main disadvantage of polling mode. To be efficient, only the target
application’s relevant parts should be executed. In the case of the xPC Target
software, this is the code that represents the Simulink model itself.

Therefore, host-target communication and target display updating are
disabled. Because polling mode reduces the features of the xPC Target product
to a minimum, you should choose it only as the last possible alternative to
reach the required base sample time for a given model. Therefore, do the
following before you consider polling mode:

• The model is optimal concerning execution speed — First, you should
run the model through the Simulink profiler to find any possible speed
optimizations using alternative blocks. If the model contains continuous
states, the discretization of these states will reduce model complexity
significantly, because a costly fixed-step integration algorithm can be
avoided. If continuous states cannot be discretized, you should use the
integration algorithm with the lowest order that still produces the required
numerical results.

6-6

Polling Mode

• Use the fastest available computer hardware — Use the CPU with the
highest clock rate available for a given PC form factor. For the desktop
form factor, this would mean a clock rate above 3 GHz; for a mobile
application, e.g., using the PC/104 form factor, this would mean a clock rate
above 1 GHz. Executing xpcbench at the MATLAB prompt gives a relative
measure of CPU performance when running typical target applications.

• Use the lowest latency I/O hardware and drivers available — Many xPC
Target applications communicate with hardware through I/O hardware
over either an ISA or PCI bus. Because each register access to such I/O
hardware introduces a comparably high latency time (~1 µs), the use of the
lowest latency hardware/driver technology available is crucial.

• The base sample time is about 50 µs or less — The time additionally
assigned to model code execution in polling mode is only about 8 µs. If the
given base sample time of the target application exceeds about 50 µs, the
possible percentage gain is rather small. Other optimization technologies
might have a bigger impact on increasing performance.

Setting the Polling Mode
Polling mode is an alternative to the default interrupt mode of the kernel.
This means that the kernel on the bootable media created by the GUI allows
running the target application in both modes without using another boot disk.

By default the target application executes in interrupt mode. To switch to
polling mode, you need to pass an option to the System target file command.

The following example uses xpcosc.

1 In the Simulink window, select Simulation > Model Configuration
Parameters.

The Configuration Parameters dialog box opens.

2 In the left pane, click the Code Generation node.

3 In the TLC options edit field, specify the option

-axpcCPUClockPoll=CPUClockRateMHz

6-7

6 Execution Modes

You must assign the target computer CPU clock rate because the Pentium
on-chip counter used for polling mode counts up with the CPU clock rate. If
the clock rate is provided, the kernel can convert clock ticks to seconds and
vice versa. If the required clock rate is not provided, the target application
does not execute at the required base sample time. You can find out about
the CPU clock rate of the target computer by rebooting the target computer
and checking the screen output during BIOS execution time. The BIOS
usually displays the CPU clock rate in MHz right after the target computer
has been powered up.

For example, if your target computer is a 1.2 GHz AMD Athlon, specify the
following option in the TLC options edit field:

-axpcCPUClockPoll=1200

6-8

Polling Mode

If you want to execute the target application in interrupt mode again,
either remove the option or assign a CPU clock rate of 0 to the option:

-axpcCPUClockPoll=0

If you make a change to the TLC options field, you need to rebuild the target
application for the change to take effect. Building the target application,
downloading it, and preparing it for a run then work exactly the same way as
they did with default interrupt mode.

After the download of the target application has succeeded, the target screen
displays the mode, and if polling mode is activated, it additionally displays
the defined CPU clock rate in MHz. This allows you to check the setting.

6-9

6 Execution Modes

Restrictions Introduced by Polling Mode
As explained above, polling mode executes the Simulink-based target
application in real time exclusively. While the target application is executing
in polling mode, all background tasks, including those for host-target
communication, target screen updating, and UDP transfers, are inactive.
This is because all interrupts of the target computer are fully disabled during
the execution of the target application. On one hand, this improves polling
performance; on the other hand, background tasks are not serviced.

The following topics list all relevant restrictions of polling mode, which are
otherwise available in the default interrupt mode.

Host-Target Communication Is Not Available During the
Execution of the Target Application
If the target application execution is started in polling mode, e.g., with

start(tg)

host-target communication is disabled throughout the entire run, or in other
words until the stop time is reached. Each attempt to issue a command like

tg

leads to a communication-related error message. Even the start(tg)
command to start polling mode execution returns such an error message,
because the host side does not receive the acknowledgment from the target
before timing out. The error message when executing start(tg) is not
avoidable. Subsequently, during the entire run, it is best not to issue any
target-related commands on the host, in order to avoid displaying the same
error message over and over again.

As a consequence, it is not possible to issue a stop(tg) command to stop the
target application execution from the host side. The target application has to
reach its set stop time for polling mode to be exited. You can use

tg.stoptime=x

before starting the execution, but once started the application executes until
the stop time is reached.

6-10

Polling Mode

Nevertheless, there is a way to stop the execution interactively before
reaching the target application stop time. See “Controlling the Target
Application” on page 6-13.

If the target application execution finally reaches the stop time and polling
mode execution is stopped, host-target communication will begin functioning
again. However, the host-target communication link might be in a bad state.
If you still get communication error messages after polling mode execution
stops, type the command

xpctargetping

to reset the host-target communication link.

After the communication link is working again, type

tg

to resync the target object on the host side with the most current status of
the target application.

Target Screen Does Not Update During the Execution of the
Target Application
As with the restriction mentioned above, target screen updating is disabled
during the entire execution of the target application. Selecting the Graphics
mode check box in the Target Properties pane of xPC Target Explorer
does not work. You should therefore clear the Graphics mode check box,
producing text output only.

Session Time Does Not Advance During the Execution of the
Target Application
Because all interrupts are disabled during a run, the session time does not
advance. The session time right before and after the run is therefore the
same. This is a minor restriction and should not pose a problem.

6-11

6 Execution Modes

The Only Rapid-Prototyping Feature Available Is Data Logging
Because host-target communication and target screen updating are disabled
during the entire run, most of the common rapid-prototyping features of the
xPC Target product are not available in polling mode:

• Parameter tuning

• Signal monitoring

• Scope objects

• Applications using any of the xPC Target APIs

• The Internet browser interface

• xpctargetspy and similar utilities

The only rapid-prototyping feature available is signal data logging, because
signal data is acquired independently of the host, and logged data is retrieved
only after the execution is stopped. Nevertheless, being able to log data allows
gathering useful information about the behavior of the target application.
Signal logging becomes a very important feature in polling mode.

Multirate Simulink Models Cannot Be Executed in Multitasking
Mode on the Target Computer
Because of the polling mode execution scheme, executing Simulink-based
target applications in multitasking mode is not possible. The modeling
of function-call subsystems to handle asynchronous events (interrupts) is
not possible either. This can be a hard restriction, especially for multirate
systems. Multirate systems can be executed in single-tasking mode, but
because of its sequential execution scheme for all subsystems with different
rates, the CPU will most likely overload for the given base sample time. As an
important consequence, polling mode is only a feasible alternative to interrupt
mode if the model has a single rate or if it can be converted to a single-rate
model. A single-rate model implies continuous states only, discrete states
only, or mixed continuous and discrete states, if the continuous and discrete
subsystems have the same rate. Use the Simulink Format > Sample time
color feature to check for the single rate requirement. Additionally, set the
Tasking Mode property in the Solver pane of the Configuration Parameters
dialog box to SingleTasking to avoid a possible switch to multitasking mode.

6-12

Polling Mode

I/O Drivers Using Kernel Timing Information Cannot Be Used
Within a Model
Some xPC Target drivers use timing information exported from the kernel
to, for example, detect time-outs. Because the standard timing engine of the
kernel does not run in polling mode, the required timing information is not
passed back to the drivers. Therefore, in polling mode you cannot use drivers
that import the header file time_xpcimport.h. This is a current restriction
only. In a future version of polling mode, all drivers will make use of the
Pentium counter for getting timing information instead.

Controlling the Target Application
As mentioned, there is no way to interact with the running target application
in polling mode. This is especially restrictive for the case of stopping the model
execution before the application has reached the stop time that was defined
before the execution started. Because polling mode tries to be as optimal as
possible, any rapid-prototyping feature except signal logging is disabled. But
because I/O driver blocks added to the model are fully functional, you can use
I/O drivers to get to a minimal level of interactivity.

Stopping a target application using polling mode — You can use a low-latency
digital input driver for the digital PCI board in your model, which reads in a
single digital TTL signal. The signal is TTL low unless the model execution
should be stopped, for which the signal changes to TTL high. You can connect
the output port of the digital input driver block to the input port of a Stop
simulation block, found in the standard Simulink block library. This stops the
execution of the target application, depending on the state of the digital input
signal. You can either use a hardware switch connected to the board-specific
input pin or you can generate the signal by other means. For example, you
could use another digital I/O board in the host machine and connect the
two boards (one in the host, the other in the target) over a couple of wires.
You could then use the Data Acquisition Toolbox™ product to drive the
corresponding TTL output pin of the host board to stop the target application
execution from within the MATLAB interface.

Generally, you can use the same software/hardware setup for passing
other information back and forth during run time of the target application.
However, you must implement any additional feature beside signal logging
at the model level and therefore must minimize any additional latency
introduced by the feature. For example, being able to interactively stop the

6-13

6 Execution Modes

target application execution is paid for by the additional 1 µs latency required
to read the digital signal over the digital I/O board. However, if you need to
read digital inputs from the plant hardware anyway, and not all lines are
used, you get the feature for free.

Polling Mode Performance
This is preliminary information. All benchmarks have been executed using a
1 GHz AMD Athlon machine. For more information about benchmarks, see
xpcbench or type help xpcbench in the MATLAB Command Window.

The minimum achievable base sample time for benchmark model Minimal is
1 µs with signal logging disabled and 2 µs with signal logging enabled.

The minimum achievable base sample time for model f14 using an ode4
fixed-step integration algorithm is 4 µs with signal logging disabled and 5 µs
with signal logging enabled.

A more realistic model, which has been benchmarked, is a second-order
continuous controller accessing real hardware over two 16 bit A/D channels
and two 16 bit D/A channels. The analog I/O board used is the fast and
low-latency PMC-ADADIO from http://www.generalstandards.com,
which is used in conjunction with some recently developed and heavily
optimized (lowest latency) xPC Target drivers for this particular board.
The minimum achievable base sample time for this model using an ode4
fixed-step integration algorithm is 11 µs with signal logging disabled and 12
µs with signal logging enabled. This equals a sample rate of almost 100 kHz.
The achievable sample time for the same model in interrupt mode is ~28 µs
or a sample rate of ~33 kHz. For this application, the overall performance
increase using polling mode is almost a factor of 3.

Polling Mode and Multicore Processors
If your target computer has multicore processors, enabling the multicore
processor supports removes the following restrictions. Other restrictions
still apply.

6-14

http://www.generalstandards.com

Polling Mode

Tip For more on how to enable multicore processor support, see “Multicore
Processor Configuration” on page 26-4.

• Host-target communication is now available during the execution of the
target application.

• Target screen now updates during the execution of the target application.

• External interrupts are now allowed during the execution of the real-time
model. This does not mean that you can trigger your model with an
external interrupt.

• File scopes can now log data into a file on the target computer.

6-15

6 Execution Modes

6-16

Execution Using MATLAB Scripts

An important part of the “Rapid Prototyping” and “Hardware in the
Loop” workflows is preparing stress test and regression test scripts.
The xPC Target product includes specialized MATLAB classes and
functions for setting up the target environment, booting the target
computer, loading and running the target application, and displaying
and recording the results. You can do these tasks using MATLAB
functions and target and scope class objects.

• Chapter 7, “Targets and Scopes in the MATLAB Interface”

• Chapter 8, “Logging Signal Data with FTP and File System Objects”

7

Targets and Scopes in the
MATLAB Interface

You can work with xPC Target target and scope objects through the MATLAB
interface (MATLAB Command Window), the target computer command line,
a Web browser, or an xPC Target API. This topic describes how to use the
MATLAB interface to work with target and scope objects.

• “Target Driver Objects” on page 7-2

• “Target Scope Objects” on page 7-8

7 Targets and Scopes in the MATLAB® Interface

Target Driver Objects

In this section...

“What Is a Target Object?” on page 7-2

“Accessing Help for Target Objects” on page 7-3

“Creating Target Objects” on page 7-3

“Displaying Target Object Properties” on page 7-4

“Setting Target Object Properties from the Host Computer” on page 7-5

“Getting the Value of a Target Object Property” on page 7-6

“Using the Method Syntax with Target Objects” on page 7-7

What Is a Target Object?
The xPC Target software uses a target object (of class xpctarget.xpc) to
represent the target kernel and your target application. Use target object
functions to run and control real-time applications on the target computer
with scope objects to collect signal data.

An understanding of the target object properties and methods will help you to
control and test your application on the target computer.

A target object on the host computer represents the interface to a target
application and the kernel on the target computer. You use target objects to
run and control the target application.

When you change a target object property on the host computer, information
is exchanged with the target computer and the target application.

To create a target object,

1 Build a target application. The xPC Target software creates a target object
during the build process.

2 Use the target object constructor function xpctarget.xpc. In the MATLAB
Command window, type tg = xpctarget.xpc.

7-2

Target Driver Objects

Target objects are of class xpctarget.xpc Class. A target object has
associated properties and methods specific to that object.

Accessing Help for Target Objects
The target application object methods allow you to control a target application
on the target computer from the host computer. You enter target application
object methods in the MATLAB window on the host computer or use MATLAB
code scripts. To access the help for these methods from the command line,
use the syntax

help xpctarget.xpc/method_name

If you want to control the target application from the target computer, use
target computer commands (see “Target Computer Command-Line Interface”
on page 10-2).

Creating Target Objects
To create a target object, perform the following

1 Build a target application. The xPC Target software creates a target object
during the build process.

2 To create a single target object, or to create multiple target objects in your
system, use the target object constructor function xpctarget.xpc with
arguments. For example, the following creates a target object connected
to the host through an RS-232 connection. In the MATLAB Command
Window, type:

tg = xpctarget.xpc('rs232', 'COM1', '115200')

The resulting target object is tg.

Tip Using this method clarifies which target object is associated with a
particular target computer.

3 To check a connection between a host and a target, use the target function
xpctarget.xpc.targetping. For example, type:

7-3

7 Targets and Scopes in the MATLAB® Interface

tg.targetping

4 To create a single target object, or to create the first of many targets in your
system, use the target object constructor function xpctarget.xpc without
arguments. For example, in the MATLAB Command Window, type:

tg = xpctarget.xpc

The resulting target object is tg.

Note If you use xpctarget.xpc without arguments to create a target object,
use xPC Target Explorer to configure your target computer. This clarifies
which target object is associated with a particular target computer.

Displaying Target Object Properties
You might want to list the target object properties to monitor a target
application. The properties include the execution time and the average task
execution time.

After you build a target application and target object from a Simulink model,
you can list the target object properties. This procedure uses the default
target object name tg as an example.

1 In the MATLAB window, type

tg

The current target application properties are uploaded to the host
computer, and MATLAB displays a list of the target object properties with
the updated values.

Note that the target object properties for TimeLog, StateLog, OutputLog,
and TETLog are not updated at this time.

2 Type

+tg

7-4

Target Driver Objects

The Status property changes from stopped to running, and the log
properties change to Acquiring.

For a list of target object properties with a description, see the target object
function xpctarget.xpc.get (target application object).

Setting Target Object Properties from the Host
Computer
You can change a target object property by using the xPC Target software set
method or the dot notation on the host computer. (See “User Interaction” for
limitations on target property changes to sample times.)

With the xPC Target software you can use either a function syntax or an
object property syntax to change the target object properties. The syntax
set(target_object, property_name, new_property_value) can be
replaced by

target_object.property_name = new_property_value

For example, to change the stop time mode for the target object tg,

• In the MATLAB window, type

tg.stoptime = 1000

• Alternatively, you can type

set(tg, 'stoptime', 1000)

When you change a target object property, the new property value is
downloaded to the target computer. The xPC Target kernel then receives the
information and changes the behavior of the target application.

To get a list of the writable properties, type set(target_object). The build
process assigns the default name of the target object to tg.

7-5

7 Targets and Scopes in the MATLAB® Interface

Getting the Value of a Target Object Property
You can list a property value in the MATLAB window or assign that value
to a MATLAB variable. With the xPC Target software you can use either a
function syntax or an object property syntax.

The syntax get(target_object, property_name) can be replaced by

target_object.property_name

For example, to access the stop time,

• In the MATLAB window, type

endrun = tg.stoptime

• Alternatively, you can type

endrun = get(tg,'stoptime') or tg.get('stoptime')

To get a list of readable properties, type target_object. Without assignment
to a variable, the property values are listed in the MATLAB window.

Signals are not target object properties. To get the value of the Integrator1
signal from the model xpcosc,

• In the MATLAB window, type

outputvalue = getsignal (tg,0)

where 0 is the signal index.

• Alternatively, you can type

tg.getsignal(0)

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

7-6

Target Driver Objects

Using the Method Syntax with Target Objects
Use the method syntax to run a target object method. The syntax
method_name(target_object, argument_list) can be replaced with

target_object.method_name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
you must enter method names in full, and in lowercase. For example, to add a
target scope with a scope index of 1,

• In the MATLAB window, type

tg.addscope('target',1)

• Alternatively, you can type

addscope(tg, 'target', 1)

7-7

7 Targets and Scopes in the MATLAB® Interface

Target Scope Objects

In this section...

“What Is a Scope Object?” on page 7-8

“Accessing Help for Scope Objects” on page 7-10

“Displaying Scope Object Properties for a Single Scope” on page 7-10

“Displaying Scope Object Properties for All Scopes” on page 7-11

“Setting the Value of a Scope Property” on page 7-11

“Getting the Value of a Scope Property” on page 7-12

“Using the Method Syntax with Scope Objects” on page 7-13

“Acquiring Signal Data with File Scopes” on page 7-14

“Acquiring Signal Data into Dynamically Named Files with File Scopes”
on page 7-15

“Advanced Data Acquisition Topics” on page 7-17

What Is a Scope Object?
The xPC Target software uses scope objects to represent scopes on the target
computer. Use scope object functions to view and collect signal data.

The xPC Target software uses scopes and scope objects as an alternative
to using Simulink scopes and external mode. A scope can exist as part of a
Simulink model system or outside a model system.

• A scope that is part of a Simulink model system is a scope block. You add
an xPC Target scope block to the model, build an application from that
model, and download that application to the target computer.

• A scope that is outside a model is not a scope block. For example, if you
create a scope with the xpctarget.xpc.addscope method, that scope is not
part of a model system. You add this scope to the model after the model has
been downloaded and initialized.

This difference affects when and how the scope executes to acquire data.

7-8

Target Scope Objects

Scope blocks inherit sample times. A scope block in the root model or a normal
subsystem executes at the sample time of its input signals. A scope block in a
conditionally executed (triggered/enabled) subsystem executes whenever the
containing subsystem executes. Note that in the latter case, the scope might
acquire samples at irregular intervals.

A scope that is not part of a model always executes at the base sample time
of the model. Thus, it might acquire repeated samples. For example, if the
model base sample time is 0.001, and you add to the scope a signal whose
sample time is 0.005, the scope will acquire five identical samples for this
signal, and then the next five identical samples, and so on.

Understanding the structure of scope objects will help you to use the MATLAB
command-line interface to view and collect signal data. A scope object on the
host computer represents a scope on the target computer. You use scope
objects to observe the signals from your target application during a real-time
run or analyze the data after the run is finished.

To create a scope object:

• Add an xPC Target scope block to your Simulink model, build the
model to create a scope, and then use the target object method
xpctarget.xpc.getscope to create a scope object.

• Use the target object method xpctarget.xpc.addscope to create a scope,
create a scope object, and assign the scope properties to the scope object.

Upon creation, the xPC Target software assigns the required scope object
class for the scope type:

• Target scopes — xpctarget.xpcsctg Class, created by calling
xpctarget.xpc.getscope with scope type target

• Host scopes — xpctarget.xpcschost Class, created by calling
xpctarget.xpc.getscope with scope type host

• File scopes – xpctarget.xpcfs Class, created by calling
xpctarget.xpc.getscope with scope type file

A scope object has associated properties and methods specific to that scope
type. All of these scope types are based on a common type, xpctarget.xpcsc

7-9

7 Targets and Scopes in the MATLAB® Interface

Class, that encompasses the object properties and methods common to all
scope object data types. The xPC Target software creates this object if you
create multiple scopes of different types for one model and combine those
scopes, for example, into a scope vector.

Accessing Help for Scope Objects
The scope object methods allow you to control scopes on your target computer.

If you want to control the target application from the target computer, use
target computer commands (see “Target Computer Command-Line Interface”
on page 10-2).

Displaying Scope Object Properties for a Single Scope
To list the properties of a single scope object, sc1,

1 In the MATLAB window, type

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)

MATLAB creates the scope object sc1 from a previously created scope.

2 Type

sc1

The current scope properties are uploaded to the host computer, and then
MATLAB displays a list of the scope object properties with the updated
values. Because sc1 is a vector with a single element, you could also type
sc1(1) or sc1([1]).

Note Only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

For a list of target object properties with a description, see the target function
xpctarget.xpc.get (target application object).

7-10

Target Scope Objects

Displaying Scope Object Properties for All Scopes
To list the properties of all scope objects associated with the target object tg,

• In the MATLAB window, type

getscope(tg) or tg.getscope

MATLAB displays a list of all scope objects associated with the target
object.

• Alternatively, type

allscopes = getscope(tg)

or

allscopes = tg.getscope

The current scope properties are uploaded to the host computer, and then
MATLAB displays a list of all the scope object properties with the updated
values. To list some of the scopes, use the vector index. For example, to list
the first and third scopes, type allscopes([1,3]).

For a list of target object properties with a description, see the target function
xpctarget.xpc.get (target application object).

Setting the Value of a Scope Property
With the xPC Target software you can use either a function syntax or an
object property syntax. The syntax set(scope_object, property_name,
new_property_value) can be replaced by

scope_object(index_vector).property_name = new_property_value

For example, to change the trigger mode for the scope object sc1,

• In the MATLAB window, type

sc1.triggermode = 'signal'

• Alternatively, you can type

7-11

7 Targets and Scopes in the MATLAB® Interface

set(sc1,'triggermode', 'signal')

or

sc1.set('triggermode', 'signal')

Note that you cannot use dot notation to set vector object properties. To assign
properties to a vector of scopes, use the set method. For example, assume
you have a variable sc12 for two scopes, 1 and 2. To set the NumSamples
property of these scopes to 300,

1 In the MATLAB window, type

set(sc12,'NumSamples',300)

To get a list of the writable properties, type set(scope_object).

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

Getting the Value of a Scope Property
You can list a property value in the MATLAB window or assign that value
to a MATLAB variable. With the xPC Target software you can use either a
function syntax or an object property syntax.

The syntax get(scope_object_vector, property_name) can be replaced by

scope_object_vector(index_vector).property_name

For example, to assign the number of samples from the scope object sc1,

• In the MATLAB window, type

numsamples = sc1.NumSamples

• Alternatively, you can type

numsamples = get(sc1,'NumSamples')

7-12

Target Scope Objects

or

sc1.get(NumSamples)

Note that you cannot use dot notation to get the values of vector object
properties. To get properties of a vector of scopes, use the get method. For
example, assume you have two scopes, 1 and 2, assigned to the variable sc12.

To get the value of NumSamples for these scopes, in the MATLAB window, type

get(sc12,'NumSamples')

You get a result like the following:

ans =
[300]
[300]

To get a list of readable properties, type scope_object. The property values
are listed in the MATLAB window.

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

Using the Method Syntax with Scope Objects
Use the method syntax to run a scope object method. The syntax
method_name(scope_object_vector, argument_list) can be replaced
with either

• scope_object.method_name(argument_list)

• scope_object_vector(index_vector).method_name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
enter method names in full, and in lowercase. For example, to add signals to
the first scope in a vector of all scopes,

• In the MATLAB window, type

7-13

7 Targets and Scopes in the MATLAB® Interface

allscopes(1).addsignal([0,1])

• Alternatively, you can type

addsignal(allscopes(1), [0,1])

Acquiring Signal Data with File Scopes
You can acquire signal data into a file on the target computer. To do so,
you add a file scope to the application. After you build an application and
download it to the target computer, you can add a file scope to that application.

Note Remember to start your scope to acquire signal data.

For example, to add a file scope named sc to the application, and to add signal
4 to that scope:

1 In the MATLAB window, type

sc=tg.addscope('file')

The xPC Target software creates a file scope for the application.

2 Type

sc.addsignal(4)

3 To start the scope, type

+sc

4 To start the target application, type

+tg

The xPC Target software adds signal 4 to the file scope. When you start the
scope and application, the scope saves the signal data for signal 4 to a file, by
default named C:\data.dat.

See “Log Signals with File Scope (xPC) Blocks” on page 5-83 for more on
file scopes.

7-14

Target Scope Objects

If you want to acquire signal data into multiple files, see “Acquiring Signal
Data into Dynamically Named Files with File Scopes” on page 7-15.

Acquiring Signal Data into Dynamically Named Files
with File Scopes
You can acquire signal data into multiple, dynamically named files on the
target computer. For example, you can acquire data into multiple files to
examine one file while the scope continues to acquire data into other files. To
acquire data in multiple files, add a file scope to the application. After you
build an application and download it to the target computer, you can add a
file scope to that application. You can then configure that scope to log signal
data to multiple files.

Note Remember to start your scope to acquire signal data.

For example, configure a file scope named sc to the application with the
following characteristics:

• Logs signal data into up to nine files whose sizes do not exceed 4096 bytes.

• Creates files whose names contain the string file_.dat.

• Contains signal 4.

1 In the MATLAB window, type

tg.StopTime=-1;

This parameter directs the target application to run indefinitely.

2 To add a file scope, type

sc=tg.addscope('file');

3 To enable the file scope to create multiple log files, type

sc.DynamicFileName='on';

Enable this setting to enable logging to multiple files.

7-15

7 Targets and Scopes in the MATLAB® Interface

4 To enable file scopes to collect data up to the number of samples, then
start over again, type

sc.AutoRestart='on';

Use this setting for the creation of multiple log files.

5 To limit each log file size to 4096, type

sc.MaxWriteFileSize=4096;

You must use this property. Set MaxWriteFileSize to a multiple of the
WriteSize property.

6 To enable the file scope to create multiple log files with the same name
pattern, type

sc.Filename='file_<%>.dat';

This sequence directs the software to create up to nine log files, file_1.dat
to file_9.dat on the target computer file system.

7 To add signal 4 to the file scope, type

sc.addsignal(4);

8 To start the scope, type

+sc

9 To start the target application, type

+tg

The software creates a log file named file_1.dat and writes data to
that file. When the size of file_1.dat reaches 4096 bytes (value of
MaxWriteFileSize), the software closes the file and creates file_2.dat
for writing until its size reaches 4096 bytes. The software repeats this
sequence until it fills the last log file, file_9.dat. If the target application
continues to run and collect data after file_9.dat, the software reopens
file_1.dat and continues to log data, overwriting the existing contents. It
cycles through the other log files sequentially. If you do not retrieve the
data from existing files before they are overwritten, the data is lost.

7-16

Target Scope Objects

If you want to acquire signal data into a single file, see “Acquiring Signal
Data with File Scopes” on page 7-14.

Advanced Data Acquisition Topics
The moment that an xPC Target scope begins to acquire data is user
configurable. You can have xPC Target scopes acquire data right away, or
define triggers for scopes such that the xPC Target scopes wait until they
are triggered to acquire data. You can configure xPC Target scopes to start
acquiring data when the following scope trigger conditions are met. These
are known as trigger modes.

• Freerun— Starts to acquire data as soon as the scope is started (default)

• Software — Starts to acquire data in response to a user request.
You generate a user request when you call the scope method
xpctarget.xpcsc.trigger or the scope function xPCScSoftwareTrigger.

• Signal — Starts to acquire data when a particular signal has crossed a
preset level

• Scope— Starts to acquire data based on when another (triggering) scope
starts

You can use several properties to further refine when a scope acquires data.
For example, if you set a scope to trigger on a signal (Signal trigger mode),
you can configure the scope to specify the following:

• The signal to trigger the scope (required)

• The trigger level that the signal must cross to trigger the scope to start
acquiring data

• Whether the scope should trigger on a rising signal, falling signal, or either
one

In the following topics, the trigger point is the sample during which the scope
trigger condition is satisfied. For signal triggering, the trigger point is the
sample during which the trigger signal passes through the trigger level. At
the trigger point, the scope acquires the first sample. By default, scopes start
acquiring data from the trigger point onwards. You can modify this behavior
using the pre- and posttriggering.

7-17

7 Targets and Scopes in the MATLAB® Interface

• Pretriggering — Starts to acquire data N moments before a trigger occurs

• Posttriggering — Starts to acquire data N moments after a trigger occurs

The NumPrePostSamples scope property controls the pre- and posttriggering
operation. This property specifies the number of samples to be collected
before or after a trigger event.

• If NumPrePostSamples is a negative number, the scope is in pretriggering
mode, where it starts collecting samples before the trigger event.

• If NumPrePostSamples is a positive number, the scope is in a posttriggering
mode, where it starts collecting samples after the trigger event.

The following topics describe two examples of acquiring data:

• “Triggering One Scope with Another Scope to Acquire Data” on page 7-18
— Describes a configuration of one scope to trigger another using the
concept of pre- and posttriggering

• “Acquiring Gap-Free Data Using Two Scopes” on page 7-21 — Describes
how to apply the concept of triggering one scope with another to acquire
gap-free data

Triggering One Scope with Another Scope to Acquire Data
This section describes the concept of triggering one scope with another to
acquire data. The description uses actual scope objects and properties to
describe triggers.

The ability to have one scope trigger another, and to delay retrieving data
from the second after a trigger event on the first, is most useful when data
acquisition for the second scope is triggered after data acquisition for the
first scope is complete. In the following explanation, Scope 2 is triggered
by Scope 1.

• Assume two scopes objects are configured as a vector with the command

sc = tg.addscope('host', [1 2]);

• For Scope 1, set the following values:

- sc(1).ScopeId = 1

7-18

Target Scope Objects

- sc(1).NumSamples = N

- sc(1).NumPrePostSamples = P

• For Scope 2, set the following values:

- sc(2).ScopeId = 2

- sc(2).TriggerMode = 'Scope'

- sc(2).TriggerScope =1

- sc(2).TriggerSample = range 0 to (N + P - 1)

In the figures below, TP is the trigger point or sample where a trigger event
occurs. Scope 1 begins acquiring data as described.

In the simplest case, where P = 0, Scope 1 acquires data right away.

The following figure illustrates the behavior if P, the value of
NumPrePostSamples, is negative. In this case, Scope 1 starts acquiring data
|P| samples before TP. Scope 2 begins to acquire data only after TP occurs.

7-19

7 Targets and Scopes in the MATLAB® Interface

The following figure illustrates the behavior if P, the value of
NumPrePostSamples, is positive. In this case, Scope 1 starts acquiring data
|P| samples after TP occurs.

Scope 1 triggers Scope 2 after the trigger event occurs. The following describes
some of the ways you can trigger Scope 2:

• sc(2).TriggerSample = 0— Causes Scope 2 to be triggered when Scope 1
is triggered. TP for both scopes as at the same sample.

• sc(2).TriggerSample = n > 0— Causes TP for Scope 2 to be n samples
after TP for Scope 1. Note that setting sc(2).TriggerSample to a value
larger than (N + P - 1) does not cause an error; it implies that Scope 2
will never trigger, since Scope 1 will never acquire more than (N + P -
1) samples after TP.

• sc(2).TriggerSample = 0 < n < (N + P) — Enables you to obtain
some of the functionality that is available with pre- or posttriggering. For
example, if you have the following Scope 1 and Scope 2 settings,

- Scope 1 has sc(1).NumPrePostSamples = 0 (no pre- or posttriggering)

- Scope 2 has sc(2).TriggerSample = 10

7-20

Target Scope Objects

- Scope 2 has sc(2).NumPrePostSample = 0

The behavior displayed by Scope 2 is equivalent to having
sc(2).TriggerSample = 0 and sc(2).NumPrePostSamples = 10.

• sc(2).TriggerSample = -1 — Causes Scope 2 to start acquiring data
from the sample after Scope 1 stops acquiring.

Note The difference between setting TriggerSample = (N + P - 1),
where N and P are the parameters of the triggering scope (Scope 1) and
TriggerSample = -1 is that in the former case, the first sample of Scope 2
will be at the same time as the last sample of Scope 1, whereas in the latter,
the first sample of Scope 2 will be one sample after the last sample of Scope 1.
This means that in the former case both scopes acquire simultaneously for
one sample, and in the latter they will never simultaneously acquire.

Acquiring Gap-Free Data Using Two Scopes
With two scopes, you can acquire gap-free data. Gap-free data is data that two
scopes acquire consecutively, with no overlap. The first scope acquires data
up to N, then stops. The second scope begins to acquire data at N+1. This is
functionality that you cannot achieve through pre- or posttriggering.

In the following example, the TriggerMode property of Scope 1 is set to
'Software'. This allows Scope 1 to be software triggered to acquire data
when it receives the command sc1.trigger.

7-21

7 Targets and Scopes in the MATLAB® Interface

The following procedure describes how you can programmatically acquire
gap-free data with two scopes.

1 Build and download the Simulink model xpcosc to the target computer.

2 In the MATLAB Command Window, assign tg to the target computer and
set the StopTime property to 1. For example,

tg=xpctarget.xpc
tg.StopTime = 1;

3 Add two host to the target application. You can assign the two scopes to a
vector, sc, so that you can work with both scopes with one command.

sc = tg.addscope('host', [1 2]);

4 Add the signals of interest (0 and 1) to both scopes.

addsignal(sc,[0 1]);

7-22

Target Scope Objects

5 Set the NumSamples property for both scopes to 500 and the TriggerSample
property for both scopes to -1. With this property setting, each scope
triggers the next scope at the end of its 500 sample acquisition.

set(sc, 'NumSamples', 500, 'TriggerSample', -1)

6 Set the TriggerMode property for both scopes to 'Scope'. Set the
TriggerScope property such that each scope is triggered by the other.

set(sc, 'TriggerMode', 'Scope');
sc(1).TriggerScope = 2;
sc(2).TriggerScope = 1;

7 Set up storage for time, t, and signal, data acquisition.

t = [];
data = zeros(0, 2);

8 Start both scopes and the model.

start(sc);
start(tg);

Note that both scopes receive exactly the same signals, 0 and 1.

9 Trigger scope 1 to start acquiring data.

scNum = 1;
sc(scNum).trigger;

Setting scNum to 1 indicates that scope 1 will acquire data first.

10 Start acquiring data using the two scopes to double buffer the data.

while (1)
% Wait until this scope has finished acquiring 500 samples
% or the model stops (scope is interrupted).
while ~(strcmp(sc(scNum).Status, 'Finished') || ...

strcmp(sc(scNum).Status, 'Interrupted')), end
% Stop buffering data when the model stops.
if strcmp(tg.Status, 'stopped')

break
end

7-23

7 Targets and Scopes in the MATLAB® Interface

% Save the data.
t(end + 1 : end + 500) = sc(scNum).Time;
data(end + 1 : end + 500, :) = sc(scNum).Data;
% Restart this scope.
start(sc(scNum));
% Switch to the next scope.

%Shortcut for if(scNum==1) scNum=2;else scNum=1,end
scNum = 3 - scNum;
end

11 When done, remove the scopes.

% Remove the scopes we added.
remscope(tg,[1 2]);

The following is a complete code listing for the preceding double-buffering
data acquisition procedure. You can copy and paste this code into a MATLAB
file and run it after you download the model (xpcosc) to the target computer.
This example assumes that the communication speed between the host
and target computer is fast enough to handle the number of samples and
can acquire the full data set before the next acquisition cycles starts. In a
similar way, you can use more than two scopes to implement a triple- or
quadruple-buffering scheme.

% Assumes model xpcosc.mdl has been built and loaded on the target computer.

% Attach to the target computer and set StopTime to 1 sec.

tg = xpctarget.xpc;

tg.StopTime = 1;

% Add two host scopes.

sc = tg.addscope('host', [1 2]);

% [0 1] are the signals of interest. Add to both scopes.

addsignal(sc,[0 1]);

% Each scope triggers next scope at end of a 500 sample acquisition.

set(sc, 'NumSamples', 500, 'TriggerSample', -1);

set(sc, 'TriggerMode', 'Scope');

sc(1).TriggerScope = 2;

sc(2).TriggerScope = 1;

% Initialize time and data log.

t = [];

data = zeros(0, 2);

% Start the scopes and the model.

7-24

Target Scope Objects

start(sc);

start(tg);

% Start things off by triggering scope 1.

scNum = 1;

sc(scNum).trigger;

% Use the two scopes as a double buffer to log the data.

while (1)

% Wait until this scope has finished acquiring 500 samples

% or the model stops (scope is interrupted).

while ~(strcmp(sc(scNum).Status, 'Finished') || ...

strcmp(sc(scNum).Status, 'Interrupted')), end

% Stop buffering data when the model stops.

if strcmp(tg.Status, 'stopped')

break

end

% Save the data.

t(end + 1 : end + 500) = sc(scNum).Time;

data(end + 1 : end + 500, :) = sc(scNum).Data;

% Restart this scope.

start(sc(scNum));

% Switch to the next scope.

scNum = 3 - scNum;

end

% Remove the scopes we added.

remscope(tg,[1 2]);

% Plot the data.

plot(t,data); grid on; legend('Signal 0','Signal 1');

7-25

7 Targets and Scopes in the MATLAB® Interface

7-26

8

Logging Signal Data with
FTP and File System
Objects

• “File Systems” on page 8-2

• “FTP and File System Objects” on page 8-4

• “Using xpctarget.ftp Objects” on page 8-5

• “Using xpctarget.fs Objects” on page 8-10

8 Logging Signal Data with FTP and File System Objects

File Systems
xPC Target file scopes create files on the target computer. To work with these
files from the host computer, you need to work with the xpctarget.ftp and
xpctarget.fs objects. The xpctarget.ftp object allows you to perform basic
file transfer operations on the target computer file system. The xpctarget.fs
object allows you to perform file system-like operations on the target computer
file system.

You cannot direct the scope to write the data to a file on the xPC Target
host computer. Once the software has written the signal data file to the
target computer, you can access the contents of the file for plotting or other
inspection from the host computer. The software can write data files to

• The C:\ or D:\ drive of the target computer. This can be a serial ATA
(SATA) or parallel ATA (PATA)/Integrated Device Electronics (IDE) drive.
The xPC Target software supports file systems of type FAT-12, FAT-16, or
FAT-32. Verify that the hard drive is not cable-selected and that the BIOS
can detect it. The type of file system (FAT-12, FAT-16, or FAT-32) limits
the maximum size of the file. The target computer file system uses the 8.3
file name convention. This means that a target computer file name cannot
exceed eight characters. Its file extension cannot exceed 3 characters.

If you have a target computer with multiple partitions on a hard drive,
the xPC Target software file scope can access those partitions if they are
formatted with FAT-12, FAT-16, or FAT-32. It will ignore any unsupported
file systems.

• A 3.5-inch disk drive.

• Disks connected to a secondary IDE controller. The software supports up to
four drives through the second IDE controller. By default, it works with
drives configured as the primary master. If you want to use a secondary
IDE controller, you must configure the xPC Target software for it (see
“Converting xPC Target File Format Content to Double Precision Data”
on page 8-14). The software searches for another drive in the first four
ports of the target computer.

The largest single file that you can create is 4 GB.

8-2

File Systems

Note that writing data files to 3.5-inch disk drives is considerably slower
than writing to hard drives.

You can access signal data files, or any target computer system file, in one
of the following ways:

• If you are running the target computer as a standalone system, you can
access that file by rebooting the target computer under an operating system
such as DOS and accessing the file through the operating system utilities.

• If you are running the target computer in conjunction with a host
computer, you can access the target computer file from the host computer
by representing that file as an xpctarget.ftp object. Through the
MATLAB interface, use xpctarget.ftp methods on that FTP object. The
xpctarget.ftp object methods are file transfer operations such as get
and put.

• If you are running the target computer in conjunction with a host
computer, you can access the target computer file from the host computer
by representing the target computer file system as an xpctarget.fs object.
Through the MATLAB interface, use the xpctarget.fs methods on the file
system and perform file system-like methods such as fopen and fread
on the signal data file. These methods work like the MATLAB file I/O
methods. The xpctarget.fs methods also include file system utilities
that allow you to collect target computer file system information for the
disk and disk buffers.

This topic describes procedures on how to use the xpctarget.ftp and
xpctarget.fs methods for common operations.

Note This topic focuses primarily on working with the target computer data
files that you generate from an xPC Target scope object of type file.

For an example of how to perform data logging with file scopes, see Data
Logging With a File Scope.

8-3

8 Logging Signal Data with FTP and File System Objects

FTP and File System Objects
The xPC Target software uses two objects, xpctarget.ftp and xpctarget.fs
(file system), to work with files on a target computer. You use the
xpctarget.ftp object to perform file transfer operations between the host
and target computer. You use the xpctarget.fs object to access the target
computer file system. For example, you can use an xpctarget.fs object to
open, read, and close a signal data file created by an xPC Target file scope.

Note This feature provides FTP-like commands, such as get and put.
However, it is not a standard FTP implementation. For example, the software
does not support the use of a standard FTP client.

To create an xpctarget.ftp object, use the FTP object constructor function
xpctarget.ftp. In the MATLAB Command Window, type

f = xpctarget.ftp

The xPC Target software uses a file system object on the host computer to
represent the target computer file system. You use file system objects to work
with that file system from the host computer.

To create an xpctarget.fs object, use the FTP object constructor function
xpctarget.fs. In the MATLAB window, type

f = xpctarget.fs

Both xpctarget.ftp and xpctarget.fs belong to the xpctarget.fsbase
object. This object encompasses the methods common to xpctarget.ftp
and xpctarget.fs. You can call the xpctarget.fsbase methods for both
xpctarget.ftp and xpctarget.fs objects. The xPC Target software creates
the xpctarget.fsbase object when you create either an xpctarget.ftp or
xpctarget.fs object. You enter xpctarget.fsbase object methods in the
MATLAB Command Window on the host computer or use MATLAB code
scripts.

8-4

Using xpctarget.ftp Objects

Using xpctarget.ftp Objects

In this section...

“Overview” on page 8-5

“Accessing Files on a Specific Target Computer” on page 8-6

“Listing the Contents of the Target Computer Folder” on page 8-7

“Retrieving a File from the Target Computer to the Host Computer” on
page 8-8

“Copying a File from the Host Computer to the Target Computer” on page
8-8

Overview
The xpctarget.ftp object enables you to work with any file on the target
computer, including the data file that you generate from an xPC Target scope
object of type file. You enter target object methods in the MATLAB window
on the host computer or use scripts. The xpctarget.ftp object has methods
that allow you to use

• xpctarget.fsbase.cd to change directories

• xpctarget.fsbase.dir to list the contents of the current folder

• xpctarget.fsbase.mkdir to make a folder

• xpctarget.fsbase.pwd to get the current working folder path

• xpctarget.fsbase.rmdir to remove a folder

• xpctarget.ftp.get (ftp) to retrieve a file from the target computer to
the host computer

• xpctarget.ftp.put to place a file from the host computer to the target
computer

The procedures in this section assume that the target computer has a signal
data file created by an xPC Target file scope. This file has the pathname
C:\data.dat. See “Create and Run Simulink Model” and “Trace Signals with
Host Scope (xPC) Blocks” on page 5-29 for additional details.

8-5

8 Logging Signal Data with FTP and File System Objects

The xPC Target software also provides methods that allow you to perform file
system-type operations, such as opening and reading files. For a complete list
of these methods, see “Using xpctarget.fs Objects” on page 8-10.

Accessing Files on a Specific Target Computer
You can access specific target computer files from the host computer for the
xpctarget.ftp object.

Use the xpctarget.ftp creator function. If your system has multiple targets,
you can access specific target computer files from the host computer for the
xpctarget.ftp object.

For example, to list the name of the current folder of a target computer
through a TCP/IP connection,

1 In the MATLAB Command Window, type a command like the following to
assign the xpctarget.ftp object to a variable.

f=xpctarget.ftp('TCPIP','192.168.0.10','22222');

2 Type

f.pwd;

Alternatively, you can use the xpctarget.xpc constructor to first construct a
target object, then use that target object as an argument to xpctarget.ftp.

1 In the MATLAB window, type a command like the following to assign the
xpctarget.xpc object to a variable.

tg1=xpctarget.xpc('TCPIP','192.168.0.10','22222');

2 Type the following command to assign the xpctarget.ftp object to the
tg1 target object variable.

f=xpctarget.ftp(tg1);

Alternatively, if you want to work with the files of the default target computer,
you can use the xpctarget.ftp constructor without arguments.

8-6

Using xpctarget.ftp Objects

In the MATLAB window, type a command like the following to assign the
xpctarget.ftp object to a variable.

f=xpctarget.ftp;

The xPC Target software assigns the f variable to the default target computer.

Listing the Contents of the Target Computer Folder
You can list the contents of the target computer folder by using xPC Target
methods on the host computer for the xpctarget.ftp object. Use the method
syntax to run an xpctarget.ftp object method:

method_name(ftp_object)

Note You must use the dir(f) syntax to list the contents of the folder. To
get the results in an M-by-1 structure, use a syntax like y=dir(f). See the
xpctarget.fsbase.dir method reference for further details.

For example, to list the contents of the C:\ drive,

1 In the MATLAB window, type the following to assign the xpctarget.ftp
object to a variable:

f=xpctarget.ftp;

2 Type

f.pwd

This gets the current folder. You get a result like the following:

ans =
C:\

3 Type the following to list the contents of this folder:

dir(f)

8-7

8 Logging Signal Data with FTP and File System Objects

Retrieving a File from the Target Computer to the
Host Computer
You can retrieve a copy of a data file from the target computer by using xPC
Target methods on the host computer for the xpctarget.ftp object.

Use the method syntax to run an xpctarget.ftp object method. The syntax
method_name(ftp_object, argument_list) can be replaced with

ftp_object.method_name(argument_list)

For example, to retrieve a file named data.dat from the target computer
C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.ftp object to a variable.

f=xpctarget.ftp;

2 Type

f.get('data.dat');

This retrieves the file and saves that file to the variable data. This content
is in the xPC Target file format.

Copying a File from the Host Computer to the Target
Computer
You can place a copy of a file from the host computer by using xPC Target
methods on the host computer for the xpctarget.ftp object.

Use the method syntax to run an xpctarget.ftp object method. The syntax
method_name(ftp_object, argument_list) can be replaced with

ftp_object.method_name(argument_list)

For example, to copy a file named data2.dat from the host computer to the
target computer C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.ftp object to a variable.

8-8

Using xpctarget.ftp Objects

f=xpctarget.ftp;

2 Type the following to save that file to the variable data.

f.put('data2.dat');

8-9

8 Logging Signal Data with FTP and File System Objects

Using xpctarget.fs Objects

In this section...

“Overview” on page 8-10

“Accessing File Systems from a Specific Target Computer” on page 8-11

“Retrieving the Contents of a File from the Target Computer to the Host
Computer” on page 8-12

“Removing a File from the Target Computer” on page 8-15

“Getting a List of Open Files on the Target Computer” on page 8-16

“Getting Information about a File on the Target Computer” on page 8-17

“Getting Information about a Disk on the Target Computer” on page 8-18

Overview
The fs object enables you to work with the target computer file system from
the host computer. You enter target object methods in the MATLAB window
on the host computer or use scripts. The fs object has methods that allow
you to use

• xpctarget.fsbase.cd to change directories

• xpctarget.fsbase.dir to list the contents of the current folder

• xpctarget.fsbase.mkdir to make a folder

• xpctarget.fsbase.pwd to get the current working folder path

• xpctarget.fsbase.rmdir to remove a folder

• xpctarget.fs.diskinfo to get information about the specified disk

• xpctarget.fs.fclose to close a file (similar to MATLAB fclose)

• xpctarget.fs.fileinfo to get information about a particular file

• xpctarget.fs.filetable to get information about files in the file system

• xpctarget.fs.fopen to open a file (similar to MATLAB fopen)

• xpctarget.fs.fread to read a file (similar to MATLAB fread)

8-10

Using xpctarget.fs Objects

• xpctarget.fs.fwrite to write a file (similar to MATLAB fwrite)

• xpctarget.fs.getfilesize to get the size of a file in bytes

• xpctarget.fs.removefile to remove a file from the target computer

Useful global utility:

• readxpcfile, to interpret the raw data from the fread method

The procedures in this section assume that the target computer has a signal
data file created by an xPC Target file scope. This file has the pathname
C:\data.dat.

The xPC Target software also provides methods that allow you to perform
file transfer operations, such as putting files on and getting files from a
target computer. For a description of these methods, see “Using xpctarget.ftp
Objects” on page 8-5.

Accessing File Systems from a Specific Target
Computer
You can access specific target computer files from the host computer for the
xpctarget.fs object.

Use the xpctarget.fs creator function. If your system has multiple targets,
you can access specific target computer files from the host computer for the
xpctarget.fs object.

For example, to list the name of the current folder of a target computer
through a TCP/IP connection,

1 In the MATLAB window, type a command like the following to assign the
xpctarget.fs object to a variable.

fsys=xpctarget.fs('TCPIP','192.168.0.10','22222');

2 Type

fsys.dir;

8-11

8 Logging Signal Data with FTP and File System Objects

Alternatively, you can use the xpctarget.xpc constructor to first construct a
target object, then use that target object as an argument to xpctarget.fs.

1 In the MATLAB window, type a command like the following to assign the
xpctarget.xpc object to a variable.

tg1=xpctarget.xpc('TCPIP','192.168.0.10','22222');

2 Type the following command to assign the xpctarget.fs object to the tg1
target object variable.

fs=xpctarget.fs(tg1);

Alternatively, if you want to work with the file system of the default target
computer, you can use the xpctarget.fs constructor without arguments.

1 In the MATLAB window, type a command like the following to assign the
xpctarget.fs object to a variable.

fsys=xpctarget.fs;

The xPC Target software assigns the fsys variable to the default target
computer.

2 Type

fsys.dir;

Retrieving the Contents of a File from the Target
Computer to the Host Computer
You can retrieve the contents of a data file from the target computer by using
xPC Target methods on the host computer for the xpctarget.fs object. This
is an alternate method to “Log Signals with File Scopes Using MATLAB
Language” on page 5-112.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

8-12

Using xpctarget.fs Objects

For example, to retrieve the contents of a file named data.dat from the target
computer C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type

h=fsys.fopen('data.dat');

or

h=fopen(fsys,'data.dat');

This opens the file data.dat for reading and assigns the file identifier to h.

3 Type

data2=fsys.fread(h);

or

data2=fread(fsys,h);

This reads the file data.dat and stores the contents of the file to data2.
This content is in the xPC Target file format.

4 Type

fsys.fclose(h);

This closes the file data.dat.

Before you can view or plot the contents of this file, you must convert the
contents. See “Converting xPC Target File Format Content to Double
Precision Data” on page 8-14.

8-13

8 Logging Signal Data with FTP and File System Objects

Converting xPC Target File Format Content to Double Precision
Data
The xPC Target software provides the script readxpcfile.m to convert xPC
Target file format content (in bytes) to double precision data representing the
signals and timestamps. The readxpcfile.m script takes in data from a file
in xPC Target format. The data must be a vector of bytes (uint8). To convert
the data to uint8, use a command like the following:

data2 = uint8(data2');

This section assumes that you have a variable, data2, that contains data in
the xPC Target file format (see “Retrieving the Contents of a File from the
Target Computer to the Host Computer” on page 8-12):

1 In the MATLAB window, change folder to the folder that contains the xPC
Target format file.

2 Type

new_data2=readxpcfile(data2);

The readxpcfile script converts the format of data2 from the xPC Target
file format to an array of bytes. It also creates a structure for that file
in new_data2, of which one of the elements is an array of doubles, data.
The data member is also appended with a time stamp vector. All data is
returned as doubles, which represent the real-world values of the original
Simulink signals at the specified times during target execution.

You can view or examine the signal data. You can also plot the data with
plot(new_data2.data).

If you are using the xPC Target software in StandAlone mode, you can extract
the data from the data file if you know the number of signals in the scope
and file header size. If you know these numbers, you can extract the data.
Note the following:

• First determine the file header size. To obtain the file header size, ignore
the first eight bytes of the file. The next four bytes store the header size as
an unsigned integer.

8-14

Using xpctarget.fs Objects

• After the header size number of bytes, the file stores the signals
sequentially as doubles. For example, assume the scope has three signals,
x, y, and z. Assume that x[0] is the value of x at sample 0, x[1] is the
value at sample 1, and so forth, and t[0], t[1] are the simulation time
values at samples 0, 1, and so forth, respectively. The file saves the data
using the following pattern:

x[0] y[0] z[0] t[0] x[1] y[1] z[1] t[1] x[2] y[2] z[2] t[2]...
x[N] y[N] z[N] t[N]

N is the number of samples acquired. The file saves x, y, z, and t as doubles
at 8 bytes each.

Removing a File from the Target Computer
You can remove a file from the target computer by using xPC Target methods
on the host computer for the xpctarget.ftp object. If you have not already
done so, close this file first with fclose.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to remove a file named data2.dat from the target computer
C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type the following to remove the specified file from the target computer.

fsys.removefile('data2.dat');

or

removefile(fsys,'data2.dat');

8-15

8 Logging Signal Data with FTP and File System Objects

Getting a List of Open Files on the Target Computer
You can get a list of open files on the target computer file system from the
host computer by using xPC Target methods on the host computer for the
xpctarget.fs object. Do this to identify files you can close. The target
computer file system limits the number of open files you can have to eight.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to get a list of open files for the file system object fsys,

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type

fsys.filetable

If the file system has open files, a list like the following is displayed:

ans =
Index Handle Flags FilePos Name
--

0 00060000 R__ 8512 C:\DATA.DAT
1 00080001 R__ 0 C:\DATA1.DAT
2 000A0002 R__ 8512 C:\DATA2.DAT
3 000C0003 R__ 8512 C:\DATA3.DAT
4 001E0001 R__ 0 C:\DATA4.DA

3 The table returns the open file handles in hexadecimal. To convert a handle
to one that other xpctarget.fs methods, such as fclose, can use, use
the hex2dec function. For example,

h1 = hex2dec('001E0001'))
h1 =
1966081

8-16

Using xpctarget.fs Objects

4 To close that file, use the xpctarget.fs fclose method. For example,

fsys.fclose(h1);

Getting Information about a File on the Target
Computer
You can display information for a file on the target computer file system from
the host computer by using xPC Target methods on the host computer for the
xpctarget.fs object.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to display the information for the file identifier fid1,

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type

fid1=fsys.fopen('data.dat');

This opens the file data.dat for reading and assigns the file identifier
to fid1.

3 Type

fsys.fileinfo(fid1);

This returns disk information like the following for the C:\ drive file
system.

ans =
FilePos: 0

AllocatedSize: 12288
ClusterChains: 1

VolumeSerialNumber: 1.0450e+009
FullName: 'C:\DATA.DAT'

8-17

8 Logging Signal Data with FTP and File System Objects

Getting Information about a Disk on the Target
Computer
You can display information for a disk on the target computer file system
from the host computer by using xPC Target methods on the host computer
for the xpctarget.fs object.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to display the disk information for the C:\ drive,

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type

fsys.diskinfo('C:\');

This returns disk information like the following for the C:\ drive file
system.

ans =
Label: 'SYSTEM '

DriveLetter: 'C'
Reserved: ''

SerialNumber: 1.0294e+009
FirstPhysicalSector: 63

FATType: 32
FATCount: 2

MaxDirEntries: 0
BytesPerSector: 512

SectorsPerCluster: 4
TotalClusters: 2040293

BadClusters: 0
FreeClusters: 1007937

Files: 19968
FileChains: 22480

8-18

Using xpctarget.fs Objects

FreeChains: 1300
LargestFreeChain: 64349

8-19

8 Logging Signal Data with FTP and File System Objects

8-20

9

Execution Using Graphical
User Interface Models

You can use the Simulink interface to create a custom graphical user interface
(GUI) for your xPC Target application. To do this, create an user interface
model with the Simulink interface and add-on products like Simulink 3D
Animation™ or Altia® Design (a third-party product).

9 Execution Using Graphical User Interface Models

xPC Target Interface Blocks to Simulink Models

In this section...

“Simulink User Interface Model” on page 9-2

“Creating a Custom Graphical Interface” on page 9-3

“To xPC Target Block” on page 9-4

“From xPC Target Block” on page 9-5

“Creating a Target Application Model” on page 9-5

“Marking Block Parameters” on page 9-6

“Marking Block Signals” on page 9-8

Simulink User Interface Model
A user interface model is a Simulink model containing Simulink blocks from
add-on products and interface blocks from the xPC Target block library.
This user interface model can connect to a custom graphical interface using
Simulink 3D Animation or Altia products. The user interface model runs on
the host computer and communicates with your target application running on
the target computer using To xPC Target and From xPC Target blocks.

The user interface allows you to change parameters by downloading them to
the target computer, and to visualize signals by uploading data to the host
computer.

Simulink 3D Animation — The Simulink 3D Animation product enables
you to display a Simulink user interface model in 3-D. It provides Simulink
blocks that communicate with xPC Target interface blocks. These blocks then
communicate to a graphical interface. This graphical interface is a Virtual
Reality Modeling Language (VRML) world displayed with a Web browser
using a VRML plug-in.

Altia Design — Altia also provides Simulink blocks that communicate with
xPC Target interface blocks. These blocks then communicate with Altia’s
graphical interface or with a Web browser using the Altia ProtoPlay plug-in.

9-2

xPC Target™ Interface Blocks to Simulink® Models

Creating a Custom Graphical Interface
The xPC Target block library provides Simulink interface blocks to connect
graphical interface elements to your target application. The steps for creating
your own custom user interface are listed below:

1 In the Simulink target application model, decide which block parameters
and block signals you want to have access to through graphical interface
control devices and graphical interface display devices.

2 Tag all block parameters in the Simulink model that you want to be
connected to a control device. See “Marking Block Parameters” on page 9-6.

3 Tag all signals in Simulink model that you want to be connected to a
display device. See “Marking Block Signals” on page 9-8.

4 In the MATLAB interface, run the function xpcsliface('model_name') to
create the user interface template model. This function generates a new
Simulink model containing only the xPC Target interface blocks (To xPC
Target and From xPC Target) defined by the tagged block parameters and
block signals in the target application model.

5 To the user interface template model, add Simulink interface blocks from
add-on products (Simulink 3D Animation, Altia Design).

9-3

9 Execution Using Graphical User Interface Models

• You can connect Altia blocks to the xPC Target To PC Target interface
blocks. To xPC Target blocks on the left should be connected to control
devices.

• You can connect Altia and Simulink 3D Animation blocks to the xPC
Target From PC Target interface blocks. From xPC Target blocks on the
right should be connected to the display devices.

You can position these blocks to your liking.

6 Start both the xPC Target application and the Simulink user interface
model that represents the xPC Target application.

To xPC Target Block
This block behaves as a sink and usually receives its input data from a
control device. The purpose of this block is to write a new value to a specific
parameter on the target application.

This block is implemented as a MATLAB S-function. The block is optimized
so that it only changes a parameter on the target application when the input
value differs from the value that existed at the last time step. This block
uses the parameter downloading feature of the xPC Target command-line
interface. This block is available from the xpclib/Misc block sublibrary. See
To xPC Target for further configuration details.

Note The use of To xPC Target blocks requires a connection between the
host and target computer. Operations such as opening a model that contains
these blocks or copying these blocks within or between models will take
significantly longer than normal without a connection between the host and
target computers.

9-4

xPC Target™ Interface Blocks to Simulink® Models

From xPC Target Block
This block behaves like a source and its output is usually connected to the
input of a display device.

Because only one numerical value per signal is uploaded during a time
step, the number of samples of a scope object is set to 1. The block uses the
capability of the xPC Target command-line interface and is implemented as a
MATLAB S-function. This block is available from the xpclib/Misc sublibrary.
See From xPC Target for further configuration details.

Note The use of From xPC Target blocks requires a connection between
the host and target computers. Operations such as opening a model that
contains these blocks or copying these blocks within or between models will
take significantly longer than normal without a connection between the host
and target computers.

Creating a Target Application Model
A target application model is a Simulink model that describes your physical
system, a controller, and its behavior. You use this model to create a real-time
target application, and you use this model to select the parameters and
signals you want to connect to a custom graphical interface.

Creating a target application model is the first step you need to do before you
can tag block parameters and block signals for creating a custom graphical
interface.

See “Marking Block Parameters” on page 9-6 and “Marking Block Signals” on
page 9-8 for descriptions of how to mark block properties and block signals.

9-5

9 Execution Using Graphical User Interface Models

Marking Block Parameters
Tagging parameters in your Simulink model allows the function xpcsliface
to create To xPC Target interface blocks. These interface blocks contain the
parameters you connect to control devices in your user interface model.

After you create a Simulink model, you can mark the block parameters. This
procedure uses the model xpctank as an example.

Tip The xpctank model blocks and signals may contain placeholder tags
illustrating the syntax. As you create your own copy of the model using these
procedures, replace these tags with your new tags or add the new tags using
the multiple label syntax.

1 Open a Simulink model. For example, in the MATLAB Command Window,
type

xpctank

2 Point to a Simulink block, and then right-click.

3 From the menu, click Properties.

A Block Properties dialog box opens.

4 In the Description box, delete the existing tag and enter a tag to the
parameters for this block.

For example, the SetPoint block is a constant with a single parameter that
selects the level of water in the tank. Enter the tag:

xPCTag(1)=water_level;

The tag has the following syntax

xPCTag(1, . . . index_n)= label_1 . . . label_n;

For single dimension ports, the following syntax is also valid:

xPCTag=label;

9-6

xPC Target™ Interface Blocks to Simulink® Models

index_n -- Index of a block parameter. Begin numbering parameters
with an index of 1.

label_n -- Name for a block parameter that will be connected to a To
xPC Target block in the user interface model. Separate the labels with a
space, not a comma.

label_1...label_n must consist of the same identifiers as those used by
C/C++ to name functions, variables, and so forth. Do not use names like
-foo.

5 Repeat steps 1 through 3 for the remaining parameters you want to tag.

For example, for the Controller block, enter the tag:

xPCTag(1,2,3)=upper_water_level lower_water_level
pump_flowrate;

For the PumpSwitch and ValveSwitch blocks, enter the following tags
respectively:

xPCTag(2)=pump_switch;
xPCTag(1)=drain_valve;

To create the To xPC blocks in an user interface model for a block with four
properties, use the following syntax:

xPCTag(1,2,3,4)=label_1label_2label_3label_4;

To create the To xPC blocks for the second and fourth properties in a block
with at least four properties, use the following syntax:

xPCTag(2,4)=label_1 label_2;

6 From the File menu, click Save as. Enter a filename for your model. For
example, enter

xpctank1

You next task is to mark block signals if you have not already done so, and
then create the user interface template model. See “Marking Block Signals”
on page 9-8 and “Creating a Custom Graphical Interface” on page 9-3.

9-7

9 Execution Using Graphical User Interface Models

Marking Block Signals
Tagging signals in your Simulink model allows the function xpcsliface to
create From xPC Target interface blocks. These interface blocks contain the
signals you connect to display devices in your user interface model.

After you create a Simulink model, you can mark the block signals. This
procedure uses the model xpctank1 (or xpctank) as an example. See
“Creating a Target Application Model” on page 9-5.

Tip The xpctank model blocks and signals may contain placeholder tags
illustrating the syntax. As you create your own copy of the model using these
procedures, replace these tags with your new tags or add the new tags using
the multiple label syntax.

Note that you cannot select signals on the output ports of any virtual blocks
such as Subsystem and Mux blocks. Also, you cannot select signals on any
function-call, triggered signal output ports.

1 Open a Simulink model. For example, in the MATLAB Command Window,
type:

xpctank

or

xpctank1

2 Point to a Simulink signal line, and then right-click.

3 From the menu, click Properties.

A Signal Properties dialog box opens.

4 Select the Documentation tab.

5 In the Description box, enter a tag to the signals for this line.

9-8

xPC Target™ Interface Blocks to Simulink® Models

For example, the block labeled TankLevel is an integrator with a single
signal that indicates the level of water in the tank. Replace the existing
tag with the tag:

xPCTag(1)=water_level;

The tag has the following format syntax:

xPCTag(1, . . . index_n)=label_1 . . . label_n;

For single dimension ports, the following syntax is also valid:

XPCTag=label:

• index_n— Index of a signal within a vector signal line. Begin numbering
signals with an index of 1.

• label_n — Name for a signal that will be connected to a From xPC
Target block in the user interface model. Separate the labels with a
space, not a comma.

label_1...label_n must consist of the same identifiers as those used by
C/C++ to name functions, variables, and so forth. Do not use names like
-foo.

To create the From xPC blocks in an user interface model for a signal line
with four signals (port dimension of 4), use the following syntax:

xPCTag(1,2,3,4)=label_1 label_2 label_3 label_4;

To create the From xPC blocks for the second and fourth signals in a signal
line with at least four signals, use the following syntax:

xPCTag(2,4)=label_1 label_2;

Note Only tag signals from nonvirtual blocks. Virtual blocks are only
graphical aids (see “Virtual Blocks”). For example, if your model combines
two signals into the inputs of a Mux block, do not tag the signal from the
output of the Mux block. Instead, tag the source signal from the output
of the originating nonvirtual block.

9-9

9 Execution Using Graphical User Interface Models

6 From the File menu, click Save as. Enter a filename for your model. For
example, enter

xpc_tank1

You next task is to mark block parameters if you have not already done so.
See “Marking Block Parameters” on page 9-6. If you have already marked
block signals, return to “Creating a Custom Graphical Interface” on page 9-3
for additional guidance on creating a user interface template model.

9-10

10

Execution Using the Target
Computer Command Line

You can interact with the xPC Target environment through the target
computer command window. The xPC Target software provides a limited
set of commands that you can use to work with the target application after
it has been loaded to the target computer, and to interface with the scopes
for that application.

10 Execution Using the Target Computer Command Line

Target Computer Command-Line Interface
This interface is useful with standalone applications that are not connected to
the host PC. You can type commands directly from a keyboard on the target
computer. As you start to type at the keyboard, a command window appears
on the target computer screen.

For a complete list of target computer commands, refer to “Target Computer
Commands”

In this section...

“Using Target Application Methods on the Target Computer” on page 10-2

“Manipulating Target Object Properties from the Target Computer” on
page 10-3

“Manipulating Scope Objects from the Target Computer” on page 10-4

“Manipulating Scope Object Properties from the Target Computer” on page
10-6

“Aliasing with Variable Commands on the Target Computer” on page 10-6

Using Target Application Methods on the Target
Computer
The xPC Target software uses an object-oriented environment on the host PC
with methods and properties. While the target computer does not use the
same objects, many of the methods on the host PC have equivalent target
computer commands. The target computer commands are case sensitive,
but the arguments are not.

After you have created and downloaded a target application to the target
computer, you can use the target computer commands to run and test your
application:

1 On the target computer, press C.

The target computer command window is activated, and a command line
opens. If the command window is already activated, do not press C. In this
case, pressing C is taken as the first letter in a command.

10-2

Target Computer Command-Line Interface

2 In the Cmd box, type a target computer command. For example, to start
your target application, type

start

3 To stop the application, type

stop

Once the command window is active, you do not have to reactivate it before
typing the next command.

Manipulating Target Object Properties from the
Target Computer
The xPC Target software uses a target object to represent the target kernel
and your target application. This section shows some of the common tasks
that you use with target objects and their properties.

These commands create a temporary difference between the behavior of the
target application and the properties of the target object. The next time you
access the target object, the properties are updated from the target computer.

1 On the target computer keyboard, press C.

The target computer activates the command window.

2 Type a target command. For example, to change the frequency of the signal
generator (parameter 1) in the model xpcosc, type

setpar 1=30

The command window displays a message to indicate that the new
parameter has registered.

System: p[1] is set to 30.00000

3 Check the value of parameter 1. For example, type

p1

10-3

10 Execution Using the Target Computer Command Line

The command window displays a message to indicate that the new
parameter has registered.

System: p[1] is set to 30.00000

4 Check the value of signal 0. For example, type

s0

The command window displays a message to indicate that the new
parameter has registered.

System: S0 has value 5.1851

5 Change the stop time. For example, to set the stop time to 1000, type

stoptime = 1000

The parameter changes are made to the target application but not to the
target object. When you type any xPC Target command in the MATLAB
Command Window, the target computer returns the current properties
of the target object.

Note The target computer command setpar does not work for vector
parameters.

To see the correlation between a parameter or signal index and its block, you
can look at the model_name_pt.c or model_name_bio.c of the generated code
for your target application.

Manipulating Scope Objects from the Target
Computer
The xPC Target software uses a scope object to represent your target scope.
This section shows some of the common tasks that you use with scope objects.

These commands create a temporary difference between the behavior of the
target application and scope object. The next time you access the scope object,
the data is updated from the target computer.

10-4

Target Computer Command-Line Interface

1 On the target computer keyboard, press C.

The target computer activates the command window.

2 Type a scope command. For example, to add a target scope (scope 2) in the
model xpcosc, type

addscope 2

The xPC Target software adds another scope monitor to the target
computer screen. The command window displays a message to indicate
that the new scope has registered.

Scope: 2, created, type is target S0

3 Type a scope command. For example, to add a signal (0) to the new scope,
type

addsignal 2=0

The command window displays a message to indicate that the new
parameter has registered.

Scope: 2, signal 0 added

You can add more signals to the scope.

4 Type a scope command. For example, to start the scope 2, type

startscope 2

The target scope 2 starts and displays the signals you added in the previous
step.

Note If you add a target scope from the target computer, you need to start
that scope manually. If a target scope is in the model, starting the target
application starts that scope automatically.

10-5

10 Execution Using the Target Computer Command Line

Manipulating Scope Object Properties from the
Target Computer
This section shows some of the common tasks that you use with target objects
and their properties.

These commands create a temporary difference between the behavior of the
target application and the properties of the target object. The next time you
access the target object, the properties are updated from the target computer.

1 On the target computer keyboard, press C.

The target computer activates the command window.

2 Type a scope property command. For example, to change the number of
samples (1000) to acquire in scope 2 of the model xpcosc, type

numsamples 2=1000

3 Type a scope property command. For example, to change the scope mode
(numerical) of scope 2 of the model xpcosc, type

scopemode 2=numerical

The target scope 2 display changes to a numerical one.

Aliasing with Variable Commands on the Target
Computer
Use variables to tag (or alias) unfamiliar commands, parameter indices, and
signal indexes with more descriptive names.

After you have created and downloaded a target application to the target
computer, you can create target computer variables.

1 On the target computer keyboard, type a variable command. For example,
if you have a parameter that controls a motor, you could create the
variables on and off by typing

setvar on = p7 = 1
setvar off = p7 = 0

10-6

Target Computer Command-Line Interface

The target computer command window is activated when you start to type,
and a command line opens.

2 Type the variable name to run that command sequence. For example, to
turn the motor on, type

on

The parameter P7 is changed to 1, and the motor turns on.

10-7

10 Execution Using the Target Computer Command Line

10-8

11

Execution Using the Web
Browser Interface

11 Execution Using the Web Browser Interface

Web Browser Interface

In this section...

“Introduction” on page 11-2

“Connecting the Web Interface Through TCP/IP” on page 11-2

“Connecting the Web Interface Through RS-232” on page 11-3

“Using the Main Pane” on page 11-6

“Changing WWW Properties” on page 11-9

“Viewing Signals with a Web Browser” on page 11-9

“Viewing Parameters with a Web Browser” on page 11-10

“Changing Access Levels to the Web Browser” on page 11-11

Introduction
The xPC Target software has a Web server that allows you to interact with
your target application through a Web browser. You can access the Web
browser with either a TCP/IP or serial (RS-232) connection.

Note RS-232 Host-Target communication mode will be removed in a future
release. Use TCP/IP instead.

The xPC Target Web server is built into the kernel that allows you to interact
with your target application using a Web browser. If the target computer is
connected to a network, you can use a Web browser to interact with the target
application from any host computer connected to the network.

Connecting the Web Interface Through TCP/IP
If your host computer and target computer are connected with a network
cable, you can connect the target application on the target computer to a
Web browser on the host computer.

The TCP/IP stack on the xPC Target kernel supports only one simultaneous
connection, because its main objective is real-time applications. This

11-2

Web Browser Interface

connection is shared between the MATLAB interface and the Web browser.
You must close any open connection to the target computer before you connect
using the host computer Web browser. This also means that only one browser
or the MATLAB interface is able to connect at one time.

Before you connect your Web browser on the host computer, you must load a
target application onto the target computer. The target application does not
have to be running, but it must be loaded. Also, your browser must have
JavaScript and StyleSheets turned on.

Note Close all other connections to the target computer. For example, if you
are currently connected to the target computer through xPC Target Explorer,
right-click on that target computer icon and select Disconnect or click the
Disconnect icon on the toolbar.

1 In the MATLAB window, type

xpcwwwenable

The MATLAB interface is disconnected from the target computer, and the
connection is reset for connecting to another client. If you do not use this
command immediately before opening the Web interface, your browser
might not be able to connect to the target computer.

2 Open a Web browser. In the address box, enter the IP address and port
number you entered in the xPC Target Explorer window. For example, if
the target computer IP address is 192.168.0.10 and the port is 22222, type

http://192.168.0.10:22222/

The browser loads the xPC Target Web interface frame and panes.

Connecting the Web Interface Through RS-232
If the host computer and target computer are connected with a serial cable
instead of a network cable, you can still connect the target application on the
target computer to a Web browser on the host computer. The xPC Target
software includes a TCP/IP to RS-232 mapping application. This application
runs on the host computer and writes whatever it receives from the RS-232

11-3

11 Execution Using the Web Browser Interface

connection to a TCP/IP port, and it writes whatever is receives from the
TCP/IP port to the RS-232 connection. TCP/IP port numbers must be less
than 216 = 65536.

Before you connect your Web browser on the host computer, you must load a
target application onto the target computer. The target application does not
have to be running, but it must be loaded. Also, your Web browser must have
JavaScript and StyleSheets turned on.

1 In the MATLAB window, type

xpcwwwenable or close(xpc)

The MATLAB interface is disconnected from the target computer, leaving
the target computer ready to connect to another client. The TCP/IP stack of
the xPC Target kernel supports only one simultaneous connection. If you
do not use this command, the TCP/IP to RS-232 gateway might not be able
to connect to the target computer.

2 Open a DOS command window, and enter the command to start the TCP/IP
to RS-232 gateway. For example, if the target computer is connected to
COM1 and you would like to use the TCP/IP port 22222, type the following:

c:\<MATLAB root>\toolbox\rtw\targets\xpc\xpc\bin\xpctcp2ser
-v -t 22222 -c 1

For a description of the xpctcp2ser command, see “Syntax for the xpctcp2ser
Command” on page 11-5.

The TCP/IP to RS-232 gateway starts running, and the DOS command
window displays the message

--

* xPC Target TCP/IP to RS-232 gateway *

* Copyright 2000 The MathWorks *

--

Connecting COM to TCP port 22222

Waiting to connect

If you did not close the MATLAB to target application connection,
xpxtcp2ser displays the message Could not initialize COM port.

11-4

Web Browser Interface

3 Open a Web browser. In the address box, enter

http://localhost:22222/

The Web browser loads the xPC Target Web interface panes.

4 Using the Web interface, start and stop the target application, add scopes,
add signals, and change parameters.

5 In the DOS command window, press Ctrl+C.

The TCP/IP to RS-232 Gateway stops running, and the DOS command
window displays the message

interrupt received, shutting down

The gateway application has a handler that responds to Ctrl+C by
disconnecting and shutting down cleanly. In this case, Ctrl+C is not used
to abort the application.

6 In the MATLAB Command Window, type

xpc

The MATLAB interface reconnects to the target application and lists the
properties of the target object.

If you did not close the gateway application, the MATLAB window displays
the message

Error in ==>
C:\MATLABR13\toolbox\rtw\targets\xpc\xpc\@xpc\xpc.m
On line 31 ==> sync(xpcObj);

You must close the MATLAB interface and then restart it.

Syntax for the xpctcp2ser Command
The xpctcp2ser command starts the TCP/IP to RS-232 gateway. The syntax
for this command is

xpctcp2ser [-v] [-n] [-t tcpPort] [-c comPort]
xpctcp2ser -h

11-5

11 Execution Using the Web Browser Interface

The options are described in the following table.

Command-
Line Option Description

-v Verbose mode. Produces a line of output every time a
client connects or disconnects.

-n Allows nonlocal connections. By default, only clients
from the same computer that the gateway is running
on are allowed to connect. This option allows anybody
to connect to the gateway.

If you do not use this option, only the host computer
that is connected to the target computer with a serial
cable can connect to the selected port. For example,
if you start the gateway on your host computer, with
the default ports, you can type in the Web browser
http://localhost:2222. However, if you try to connect
to http://Domainname.com:22222, you will probably
get a connection error.

-t tcpPort Use TCP port tcpPort. Default t is 22222. For example,
to connect to port 20010, type -t 20010.

-h Print a help message.

-c comPort Use COM port comPort (1 <= comPort <= 4). Default is
1. For example, to use COM2, type -c 2.

Using the Main Pane
TheMain pane is divided into four parts, one below the other. The four parts
are System Status, xPC Target Properties, Navigation, and WWW
Properties.

After you connect a Web browser to the target computer, you can use the
Main pane to control the target application:

1 In the left frame, click the Refresh button.

11-6

Web Browser Interface

System status information in the top cell is uploaded from the target
computer. If the right frame is either the Signals List pane or the Screen
Shot pane, updating the left frame also updates the right frame.

2 Click the Start Execution button.

The target application begins running on the target computer, the Status
line is changed from Stopped to Running, and the Start Execution
button text changes to Stop Execution.

3 Update the execution time and average task execution time (TET).
Click the Refresh button. To stop the target application, click the Stop
Execution button.

4 Enter new values in the StopTime and SampleTime boxes, then click
the Apply button. You can enter -1 or Inf in the StopTime box for an
infinite stop time.

The new property values are downloaded to the target application. Note
that the SampleTime box is visible only when the target application is
stopped. You cannot change the sample time while a target application is
running. (See “User Interaction” for limitations on changing sample times.)

5 Select scopes to view on the target computer. From the ViewMode list,
select one or all of the scopes to view.

11-7

11 Execution Using the Web Browser Interface

After entering values, the screen looks like this:

11-8

Web Browser Interface

Note The ViewMode control is visible in the xPC Target Properties pane
only if you add two or more scopes to the target computer.

Changing WWW Properties
The WWW Properties cell in the left frame contains fields that affect the
display on the Web interface itself, and not the application. There are two
fields: maximum signal width to display and refresh interval.

1 In the Maximum Signal Width box enter -1, Inf (all signals), 1 (show
only scalar signals), 2 (show scalar and vector signals less than or equal to
2 wide), or n (show signals with a width less than or equal to n).

Signals with a width greater than the value you enter are not displayed
on the Signals pane.

2 In the Refresh Interval box, enter a value greater than 10. For example,
enter 20.

The signal pane updates automatically every 20 seconds. Entering -1 or
Inf does not automatically refresh the pane.

Sometimes, both the frames try to update simultaneously, or the auto refresh
starts before the previous load has finished. This problem can happen with
slow network connections. In this case, increase the refresh interval or
manually refresh the browser (set the Refresh Interval = Inf).

This can also happen when you are trying to update a parameter or property
at the same time that the pane is automatically refreshing.

Sometimes, when a race condition occurs, the browser becomes confused about
the format, and you might have to refresh it. This should not happen often.

Viewing Signals with a Web Browser
The Signals pane is a list of the signals in your model.

After you connect a Web browser to the target computer you can use the
Signals pane to view signal data:

11-9

11 Execution Using the Web Browser Interface

1 In the left frame, click the Signals button.

The Signals pane is loaded in the right frame with a list of signals and the
current values.

2 On the Signals pane in the right frame, click the Refresh button.

The Signals pane is updated with the current values. Vector/matrix
signals are expanded and indexed in the same column-major format that
the MATLAB interface uses. This can be affected by theMaximum Signal
Width value you enter in the left frame.

3 In the left frame, click the Screen Shot button.

The Screen Shot pane is loaded and a copy of the current target computer
screen is displayed. The screen shot uses the portable network graphics
(PNG) file format.

Viewing Parameters with a Web Browser
The Parameters pane displays a list of all the tunable parameters in your
model. Row and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target computer, you can use the
Parameters pane to change parameters in your target application while it is
running in real time:

1 In the left frame, click the Parameters button.

The Parameter List pane is loaded into the right frame.

If the parameter is a scalar parameter, the current parameter value is
shown in a box that you can edit.

If the parameter is a vector or matrix, click the Edit button to view the
vector or matrix. You can edit the parameter in this pane.

2 In the Value box, enter a new parameter value, and then click the Apply
button.

11-10

Web Browser Interface

Changing Access Levels to the Web Browser
The Web browser interface allows you to set access levels to the target
application. The different levels limit access to the target application. The
highest level, 0, is the default level and allows full access. The lowest level, 4,
only allows signal monitoring and tracing with your target application.

1 In the Simulink window, click Simulation > Model Configuration
Parameters.

The Configuration Parameters dialog box for the model is displayed.

2 Click the Code Generation node.

The code generation pane opens.

3 In the Target selection section, access levels are set in the System
target file box. For example, to set the access level to 1, enter

xpctarget.tlc -axpcWWWAccessLevel=1

The effect of not specifying -axpcWWWAccessLevel is that the highest
access level (0) is set.

4 Click OK.

The various fields disappear, depending on the access level. For example, if
your access level does not allow you access to the parameters, you do not see
the button for parameters.

There are various access levels for monitoring, which allow different levels
of hiding. The proposed setup is described below. Each level builds on
the previous one, so only the incremental hiding of each successive level is
described.

Level 0 — Full access to all panes and functions.

Level 1 — Cannot change the sample and stop times. Cannot change
parameters, but can view parameters.

Level 2 — Cannot start and stop execution of the target application or log
data.

11-11

11 Execution Using the Web Browser Interface

Level 3 — Cannot view parameters. Cannot add new scopes, but can edit
existing scopes.

Level 4 — Cannot edit existing scopes on the Scopes pane. Cannot add or
remove signals on the Scopes pane. Cannot view the Signals pane and the
Parameters pane, and cannot get scope data.

11-12

Troubleshooting

Refer to these guidelines, hints, and tips for questions or
issues you might have about your installation of the
xPC Target product. For more specific troubleshooting
solutions, go to the MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/search_results.html?q=product:"xPC+T
for specific troubleshooting solutions.

• Chapter 12, “Basic Troubleshooting”

• Chapter 13, “Confidence Test Failures”

• Chapter 14, “Host Computer Configuration”

• Chapter 15, “Target Computer Configuration”

• Chapter 16, “Host-Target Communication”

• Chapter 17, “Target Computer Boot Process”

• Chapter 18, “Modeling”

• Chapter 19, “Model Compilation”

• Chapter 20, “Application Download”

• Chapter 21, “Application Execution”

• Chapter 22, “Application Parameters”

• Chapter 23, “Application Signals”

• Chapter 24, “Application Performance”

• Chapter 25, “Getting MathWorks Support”

http://www.mathworks.com/support/search_results.html?q=product:"xPC+Target"

12

Basic Troubleshooting

12 Basic Troubleshooting

Troubleshooting Procedure
An xPC Target installation can sometimes fail. Causes include hardware
failures, changes in underlying system software, and procedural errors.
Follow this procedure to address these problems:

1 Run the confidence test (see “Run Confidence Test on Configuration”).

Tip Run the confidence test as the first step in troubleshooting, as well as in
validating your initial product installation and configuration.

2 If any tests fail, see the following information about the specific failure:

• “Test 1: Ping Using System Ping” on page 13-2

• “Test 2: Ping Using xpctargetping” on page 13-5

• “Test 3: Reboot Target Computer” on page 13-7

• “Test 4: Build and Download xpcosc” on page 13-9

• “Test 5: Check Host-Target Communications” on page 13-12

• “Test 6: Download Prebuilt Target Application” on page 13-14

• “Test 7: Execute Target Application” on page 13-15

• “Test 8: Upload Data and Compare” on page 13-16

3 Check the categorized questions and answers for clues to the root cause of
the problem.

4 If the tests run, but test execution time is slow or the CPU overloads, see the
questions and answers for Application Performance.

5 Check the MathWorks Support web site and MATLAB Central for tips. See
“Where Is the MathWorks Support Web Site?” on page 25-2.

6 Call MathWorks Technical Support. See “How Do I Contact MathWorks
Technical Support?” on page 25-5.

12-2

13

Confidence Test Failures

This topic describes guidelines, hints, and tips for questions
or issues you might have while using the xPC Target
product. Refer to the MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/search_results.html?q=product:"xPC+Target")
for specific troubleshooting solutions. The xPC Target documentation is also
available from this site.

• “Test 1: Ping Using System Ping” on page 13-2

• “Test 2: Ping Using xpctargetping” on page 13-5

• “Test 3: Reboot Target Computer” on page 13-7

• “Test 4: Build and Download xpcosc” on page 13-9

• “Test 5: Check Host-Target Communications” on page 13-12

• “Test 6: Download Prebuilt Target Application” on page 13-14

• “Test 7: Execute Target Application” on page 13-15

• “Test 8: Upload Data and Compare” on page 13-16

http://www.mathworks.com/support/search_results.html?q=product:"xPC+Target"

13 Confidence Test Failures

Test 1: Ping Using System Ping
If you are using a network connection, this test is a standard system ping to
your target computer.

Note The confidence test skips test 1 for serial connections.

Troubleshoot failures with the following procedure:

1 Open a DOS shell and type the IP address of the target computer:

ping xxx.xxx.xxx.xxx

Check the messages on your screen.

If DOS displays a message similar to the following, system ping succeeds
even though test 1 fails.

Pinging xxx.xxx.xxx.xxx with 32 bytes of data:
Reply from xxx.xxx.xxx.xxx: bytes-32 time<10 ms TTL=59

If the DOS shell displays the following message, the system ping command
failed.

Pinging xxx.xxx.xxx.xxx with 32 byte of data:
Request timed out.

2 Ping succeeds — Ethernet addresses OK?

If ping succeeds, check whether you entered the required IP and gateway
addresses in xPC Target Explorer:

a Type xpcexplr in the MATLAB Command Window.

b In the Targets pane, expand the target computer node.

c Click the Target Properties icon in the toolbar or double-click
Properties.

d Select Host-to-Target communication.

13-2

Test 1: Ping Using System Ping

e Verify that IP address, Subnet mask, and Gateway boxes contain
the required values.

f Select Boot configuration.

g Click Create boot disk.

h Reboot the target computer with the new kernel.

3 Ping fails — Cables OK?

If ping fails, first check your network cables. You might have a faulty
network cable or, if you are using a coaxial cable, the terminators might
be missing.

4 Ping fails — xPC Target properties OK?

Check that you have entered all required properties in xPC Target Explorer:

a Type xpcexplr in the MATLAB Command Window.

b In the Targets pane, expand the target computer node.

c Click the Target Properties icon in the toolbar or double-click
Properties.

d Select Host-to-Target communication.

e Verify that IP address, Subnet mask, and Gateway boxes contain
the required values.

f Verify that the bus settings match those of the target computer:

• For a PCI computer: check that Bus type is set to PCI instead of ISA.

• For an ISA computer:

– Check that Bus type is set to ISA instead of PCI.

– Check that Address is set to the required I/O port base address and
that the address does not conflict with that of another hardware
resource.

– Check that IRQ is set to the required IRQ line and that the IRQ
line does not conflict with that of another hardware resource.

13-3

13 Confidence Test Failures

– If the target computer motherboard contains a PCI chip set, check
whether the target computer BIOS reserves the IRQ line used by
the ISA bus Ethernet card.

g Select Boot configuration.

h Click Create boot disk.

i Reboot the target computer with the new kernel.

5 Ping fails — Ethernet hardware operating?

Verify that your hardware is operating. For example, check that the green
“ready” light goes on when the cable is connected to the Ethernet card.

6 Ping fails — Ethernet card supported?

Verify that you are using a supported Ethernet card on the target computer.
See “Network Communication Setup” for further details, including supplied
Ethernet cards.

7 Ping fails — Not a locally mounted folder?

Run xpctest from a locally mounted folder, such as Z:\work, rather than
from a UNC network folder, such as \\Server\user\work.

8 If these steps do not solve your problem, check the questions and answers
for Host-Target Communication and section “Faulty BIOS Settings on
Target Computer” on page 15-2.

9 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-4

Test 2: Ping Using xpctargetping

Test 2: Ping Using xpctargetping

This test is an xPC Target ping to your target computer. Troubleshoot failures
with the following procedure:

1 In the MATLAB Command Window, type

tg=xpctarget.xpc('argument-list')

where argument-list is the connection information that indicates which
target computer you are working with. If you do not specify any arguments,
the software assumes that you are communicating with the default target
computer.

Check the messages in the MATLAB Command Window.

MATLAB should respond with the following messages:

xPC Object
Connected = Yes
Application = loader

2 Not connected — Bad target boot kernel?

If you do not get the preceding messages, you could have a bad target boot
kernel. To solve this problem, create a new target boot kernel and reboot
the target computer with the new kernel. See “Target Boot Methods”.

3 Not connected — Environment variables set?

Use the PC MATLAB command to check the environment variables, in
particular Target PC IP address. If test 1 passes but test 2 fails, you
might not have entered the required IP address.

4 Not connected — Ethernet card supported?

If you are using a TCP/IP connection, make sure you are using a supported
Ethernet card (see “Test 1: Ping Using System Ping” on page 13-2).

5 Not connected — RS-232 configuration?

If you are using an RS-232 connection, check the following:

13-5

13 Confidence Test Failures

• Verify that you are using a null modem cable (see “RS-232 Hardware”).

• Verify that the COM ports on the host and target computers are enabled
in the BIOS. If they are disabled, test 2 fails.

• Verify that the specified COM port is connected on each computer.

• Verify that the COM port being used matches the port specified in the
target computer configuration.

Note RS-232 host-target communication mode will be removed in a future
release. Use TCP/IP instead.

6 If these steps do not solve your problem, check the questions and answers
for Host-Target Communication and section “Faulty BIOS Settings on
Target Computer” on page 15-2.

7 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-6

Test 3: Reboot Target Computer

Test 3: Reboot Target Computer
This test tries to boot your target computer using an xPC Target command.

Note This procedure assumes that you have set environment settings
with xPC Target Explorer. See “Serial Communication Setup” or “Network
Communication Setup”.

Troubleshoot failures with the following procedure:

1 In the MATLAB Command Window, type

xpctest('-noreboot')

This command reruns the test without using the xpctarget.xpc.reboot
command and displays the message

Test 3, Software reboot the target PC: ... SKIPPED

2 Build Succeeded — Software reboot supported?

Check the results of Test 4, Build and download an xPC
Target application using model xpcosc. If xpctest skips the
xpctarget.xpc.reboot command but builds and loads the target
application without an error, the problem could be that the target computer
does not support the xPC Target reboot command. In this case, you need
to reboot using a hardware reset button.

3 Build Failed — Kernel not loaded?

If you saw the following error, the kernel might not be loaded when the
host computer initiates communication with the target computer.

ReadFile Error: 6

Older xPC Target releases might receive this error. As a workaround, run
xpctest with the noreboot option. For example,

xpctest('-noreboot')

13-7

13 Confidence Test Failures

This command runs the test without trying to reboot the target computer.
It displays the following message:

Test 3, Software reboot the target PC: ... SKIPPED

4 Build Failed — Example model modified?

If you directly or indirectly modify the xpcosc example model supplied with
the product, test 3 is likely to fail.

Note Do not modify any of the files installed with the xPC Target software.
If you want to modify one of these files, copy the file and modify the copy.

Restore the xpcosc example model to its original state by one of the
following methods:

• Recreate the original model by editing it in the following location:

matlabroot\toolbox\rtw\targets\xpc\xpcdemos

• Reinstall the software.

5 If these steps do not solve your problem, check the questions and answers
for-Target Computer Boot Process and section “Faulty BIOS Settings on
Target Computer” on page 15-2.

6 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-8

Test 4: Build and Download xpcosc

Test 4: Build and Download xpcosc

This test tries to build and download the model xpcosc. Troubleshoot failures
with the following procedure:

1 In the MATLAB Command Window, check the error messages.

These messages help you locate where there is a problem.

2 Build Failed — Loader not ready?

If you get the following error message, reboot your target computer:

xPC Target loader not ready

This error message is sometimes displayed even if the target screen shows
that the loader is ready.

3 Build Failed — Using full duplex?

If the communication between the host computer and target computer is
TCP/IP, set the host computer network interface card (NIC) card and hub
to half-duplex mode. Do not set the mode to full-duplex mode.

4 Build Failed — Compiler not supported?

Verify that a supported compiler is being used and that all of the blocks in
the model can be compiled with the given compiler and compiler version.

5 Build Failed — Compiler path?

All Microsoft Visual compiler components must be in the Microsoft Visual
Studio® folder after installation. If the compiler is not installed at the
required location, you might get one of the following errors:

Error executing build command: Error using ==> make_rtw
Error using ==> rtw_c (SetupForVisual)
Invalid DEVSTUDIO path specified

13-9

13 Confidence Test Failures

or

Error executing build command: Error using ==> make_rtw
Error using ==> rtw_c
Errors encountered while building model "xpcosc"

along with the following MATLAB Command Window error:

NMAKE: fatal error U1064: MAKEFILE not found and no target
specified
Stop.

Verify your compiler setup:

a In the MATLAB command window, type:

xpcsetCC('setup')

This function queries the host computer for C compilers that the xPC
Target environment supports. It returns output like the following:

Select your compiler for xPC Target.

[1] Microsoft Visual C++ Compilers 2008 Professional Edition (SP1) in

c:\Program Files (x86)\Microsoft Visual Studio 9.0

[2] Microsoft Visual C++ Compilers 2010 Professional in

C:\Program Files (x86)\Microsoft Visual Studio 10.0

[0] None

Compiler:

b At the Compiler prompt, enter the number for the compiler that you
want to use. For example, 2.

The function verifies your selection:

Verify your selection:

Compiler: Microsoft Visual C++ Compilers 2010 Professional
Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

13-10

Test 4: Build and Download xpcosc

Are these correct [y]/n?

c Type y or press Enter to verify the selection.

The function finishes the dialog.

Done...

6 Build Failed — COM port read failed?

If you see the following MATLAB Command Window error:

ReadFile failed while reading from COM-port

• Check the state of your target computer. If it is unresponsive, you might
need to reboot the target computer.

• In xPC Target Explorer, try to connect to the target computer again.
Be sure to also check the connection between the host computer and
target computer.

7 If these steps do not solve your problem, check the questions and
answers for Model Compilation, Application Download, and Host-Target
Communication and section “Faulty BIOS Settings on Target Computer”
on page 15-2.

8 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-11

13 Confidence Test Failures

Test 5: Check Host-Target Communications
This error occurs only when the environment variable settings are out of date.
Troubleshoot failures with the following procedure:

1 Type xpcexplr in the MATLAB Command Window.

2 In the Targets pane, expand the target computer node.

3 Click the Target Properties icon in the toolbar or double-click
Properties.

4 Select Host-to-Target communication and make any required changes
to the communication properties.

Note RS-232 host-target communication mode will be removed in a future
release. Use TCP/IP instead.

5 Select Boot configuration.

6 Set the required Boot mode.

Tip If you have xPC Target Embedded Option™ installed, verify that you
have selected Boot modeStand Alone.

For information on boot options, see “Target Boot Methods”.

7 Click Create boot disk

8 Reboot the target computer.

9 Rerun xpctest.

10 If these steps do not resolve the issue, recreate the target boot kernel using
xpcbootdisk, reboot the target computer, and rerun xpctest.

13-12

Test 5: Check Host-Target Communications

11 If these steps do not solve your problem, check the questions and answers
for Host-Target Communication and section “Faulty BIOS Settings on
Target Computer” on page 15-2.

12 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-13

13 Confidence Test Failures

Test 6: Download Prebuilt Target Application
This test runs the basic target object constructor, xpc. This error rarely occurs
unless an earlier test has failed.

1 Verify that all preceding steps completed with no error.

2 Configure, build and download the tutorial model and record any error
messages that result (see “Build and Download Target Application”).

3 If these steps do not solve your problem, check the questions and answers
for Application Download and Host-Target Communication and section
“Faulty BIOS Settings on Target Computer” on page 15-2.

4 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-14

Test 7: Execute Target Application

Test 7: Execute Target Application
This test executes a target application (xpcosc) on the target computer. This
test fails if you change the xpcosc model start time to something other than
0, such as 0.001. This change causes the test, and the MATLAB interface, to
halt. To address this failure:

1 Set the xpcosc model start time back to 0.

2 Rerun the test.

3 If these steps do not solve your problem, check the questions and answers
for Application Execution, Application Performance, Application Signals,
and Application Parameters and section “Faulty BIOS Settings on Target
Computer” on page 15-2.

4 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-15

13 Confidence Test Failures

Test 8: Upload Data and Compare
This test executes a target application (xpcosc) on the target computer. This
test might fail if you change the xpcosc model (for example, if you remove
the Outport block).

Note Do not modify any of the files installed with the xPC Target software.
If you want to modify one of these files, copy the file and modify the copy.

1 To eliminate this problem, restore the xpcosc example model to its original
state by one of the following methods:

• Recreate the original model by editing it in the following location:

matlabroot\toolbox\rtw\targets\xpc\xpcdemos

• Reinstall the software.

2 Other issues might also cause this test to fail. If you still need more help,
check the following:

• If you are running a new xPC Target release, be sure that you have a
new target boot kernel for this release. See “What Should I Do After
Updating Software?” on page 25-4.

• There is a known issue with xPC Target software version
1.3. It might occur when you run xpctest two consecutive
times. See the known issue and solution documented in
http://www.mathworks.com/support/solutions/data/1-18DTB.html.

3 If you are installing another version of the xPC Target software on top of an
existing version, check the version number of the current installation. At
the MATLAB command line, type xpclib. The version number appears at
the bottom of the xPC Target block library window. If the version number
is not the one to which you want to upgrade, reinstall the software.

4 If these steps do not solve your problem, check the questions and answers
for Application Execution, Application Performance, Application Signals,
and Application Parameters and section “Faulty BIOS Settings on Target
Computer” on page 15-2.

13-16

http://www.mathworks.com/support/solutions/data/1-18DTB.html

Test 8: Upload Data and Compare

5 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-17

13 Confidence Test Failures

13-18

14

Host Computer
Configuration

14 Host Computer Configuration

Why Does Boot Drive Creation Halt?
If your host computer MATLAB interface halts while creating an xPC Target
boot disk or network boot image:

• Use another drive to create a new xPC Target boot drive or network boot
image.

• If your host computer has antivirus software, it might conflict with the
MATLAB software. Disable the software while using the MATLAB
interface.

• Verify that the host computer drive is accessible. If it is not accessible,
replace the drive.

14-2

15

Target Computer
Configuration

• “Faulty BIOS Settings on Target Computer” on page 15-2

• “Allowable Partitions on the Target Hard Drive” on page 15-3

• “File System Disabled on the Target Computer” on page 15-4

• “Adjust the Target Computer Stack Size” on page 15-5

• “How Can I Get PCI Board Information?” on page 15-6

• “How Do I Diagnose My Board Driver?” on page 15-7

15 Target Computer Configuration

Faulty BIOS Settings on Target Computer
The BIOS settings of a computer system can affect how the computer works.
If you experience problems using the xPC Target software, you should check
the system BIOS settings of the target computer. These settings are beyond
the control of the xPC Target product. See “Target Computer BIOS Settings”.

Faulty BIOS settings can cause issues like the following:

• Why is my target not booting?

• Why can getxpcpci detect PCI boards, but autosearch -l cannot?

• Why can my standalone application run on some target computers, but
not others?

• Why is my target computer crashing while downloading applications?

• Why is my target PC104 hanging on boot?

• Why is my boot time slow?

• Why is my software not running in real time?

• Why are my USB ports not working?

15-2

Allowable Partitions on the Target Hard Drive

Allowable Partitions on the Target Hard Drive
The target computer hard drive can contain one or multiple partitions.
However, the xPC Target software supports file systems of type FAT-12,
FAT-16, or FAT-32 only.

15-3

15 Target Computer Configuration

File System Disabled on the Target Computer
If your target computer does not have a FAT hard disk, the monitor on the
target computer displays the following error:

ERROR -4: drive not found
No accessible disk found: file system disabled

If you do not want to access the target computer file system, you can ignore
this message. If you want to access the target computer file system, add a
FAT hard disk to the target computer system and reboot.

Tip Verify that the hard drive is not cable-selected and that the BIOS can
detect it.

15-4

Adjust the Target Computer Stack Size

Adjust the Target Computer Stack Size
To discover and adjust the stack size used by the real-time threads on the
target computer:

1 Add the following blocks to your model:

• xPC Target Get Free Stack Size — Outputs the number of bytes of stack
memory currently available to the target application thread.

• xPC Target Get Minimal Free Stack Size — Outputs the number of bytes
that have never been used in the stack since the thread was created.

Note The underlying function traverses the entire stack to find unused
bytes. For performance reasons, Get Minimal Free Stack Size should be
used only for diagnostic purposes.

2 Execute the target application, monitoring the stack size and minimal
stack size.

3 Calculate a stack size that allows execution to proceed.

Note

• To meet the memory requirements, you might have to reconfigure your
target computer.

• The xPC Target kernel can use only 2 GB of memory.

4 Adjust the stack size of the real-time threads by setting a TLC option in
the Configuration Parameters dialog, Code Generation node, section Build
Process.

For example, to set the stack size to 256 kBytes, type the following in the
TLC option box:

-axPCModelStackSizeKB=256

15-5

15 Target Computer Configuration

How Can I Get PCI Board Information?
Information about the PCI devices in your target computer is useful if you
want to determine what PCI boards are installed in your xPC Target system,
or if you have multiple boards of a particular type in your system. Before you
start, determine what boards are installed in your target computer by typing
the following in the MATLAB Command Window:

getxpcpci('all')

Note Typing this command will automatically connect the host computer to
the default target computer, if it is running.

If you have or want to use multiple boards of a particular type in
your system, verify that the I/O driver supports multiple boards. See
the “Multiple board support” entry for this board type in the xPC
Target library or the xPC Target Interactive Hardware Selection Guide
(http://www.mathworks.com/support/product/XP/productnews
/interactive_guide/xPC_Target_Interactive_Guide.html.

If you confirm that the board type supports multiple boards, and these boards
are installed in the xPC Target system, do the following to obtain the bus
and slot information for these boards:

1 In the PCI devices display, note the contents of the Bus and Slot columns
of the PCI devices in which you are interested.

2 Enter the bus and slot numbers as vectors into the PCI Slot parameter of
the PCI device. For example:

[1 9]

where 1 is the bus number and 9 is the slot number.

For additional information about PCI bus I/O devices, refer to “PCI Bus I/O
Devices”.

15-6

http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html
http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html

How Do I Diagnose My Board Driver?

How Do I Diagnose My Board Driver?
If you encounter issues using the xPC Target I/O drivers:

1 Display the input/output behavior of the board using an external instrument,
such as an oscilloscope or logic analyzer.

2 Verify that you have configured the I/O board driver according to the
manufacturer’s data sheet.

3 Verify that you are using the latest version of the I/O board driver and of the
xPC Target software. See “How Do I Get a Software Update?” on page 25-3.

4 Verify that the behavior persists when you run the target application on a
different target computer.

5 Verify that the behavior persists when you install another instance of the I/O
board in the target computer.

6 Download the manufacturer’s I/O driver and diagnostic software from the
manufacturer web site, install the driver and software on your computer, and
test the hardware using the manufacturer’s software.

7 Report the issue to MathWorks Support at
http://www.mathworks.com/support/contact_us/index.html.

15-7

http://www.mathworks.com/support/contact_us/index.html

15 Target Computer Configuration

15-8

16

Host-Target
Communication

• “Is There Communication Between the Computers?” on page 16-2

• “Boards with Slow Initialization” on page 16-4

• “Timeout with Multiple Ethernet Cards” on page 16-6

• “Recovery from Board Driver Errors” on page 16-8

• “How Can I Diagnose Network Problems?” on page 16-9

16 Host-Target Communication

Is There Communication Between the Computers?
Use the following MATLAB commands from the host computer to validate
the host/target setup:

• xpctargetping

The xpctargetping command performs a basic communication check
between the host and target computers. This command returns success
only if the xPC Target kernel is loaded and running and the host and target
computer are communicating. Use this command for a quick check of the
communication between the host computer and target computer.

• xpctest

The xpctest command performs a series of tests on your xPC Target
system. These tests range from performing a basic communication check
to building and running target applications. At the end of each test, the
command returns an OK or failure message. If the test is inappropriate for
your setup, the command returns a SKIPPED message. Use this command
for a thorough check of your xPC Target installation.

Communication errors might also occur in the following instances:

• The target computer is running an old xPC Target boot kernel that is not in
sync with the xPC Target release installed on the host computer. Create
a new target boot kernel for each new release.

• If the communication between the host computer and target computer is
TCP/IP, set the host computer network interface card (NIC) card and hub
to half-duplex mode. Do not set the mode to full-duplex mode.

• If you have an active firewall in your system, you might experience
communication errors. For example, build errors might occur if you try to
build and download a model with a thermocouple board (causing a slower
initialization time) in a system that contains a firewall. To work around
this issue, you can add the MATLAB interface to the firewall exception list.
See also “Boards with Slow Initialization” on page 16-4

• To diagnose BIOS problems, see:

- “Faulty BIOS Settings on Target Computer” on page 15-2

- “Target Computer BIOS Settings”

16-2

Is There Communication Between the Computers?

• If multiple Ethernet cards or chips are installed in the target computer, see
“Timeout with Multiple Ethernet Cards” on page 16-6.

16-3

16 Host-Target Communication

Boards with Slow Initialization
Some xPC Target boards take a long time to initialize. This situation might
cause the software to run out of time before a model downloads, causing the
host computer to disconnect from the target computer.

By default, if the host computer does not get a response from the target
computer after downloading a target application and waiting 5 seconds, the
host computer software times out. The target computer responds only after
downloading and initializing the target application.

Usually 5 seconds is enough time to initialize a target application, but in
some cases it might not be long enough. The time to download a target
application mostly depends on your I/O hardware. For example, thermocouple
hardware (such as the PCI-DAS-TC board) takes longer to initialize. With
slower hardware, you might also get errors when building and downloading
an associated model. Even though the target computer is fine, a false timeout
is reported and you might get an error like the following:

"cannot connect to ping socket"

This is not a fatal error. You can reestablish communication with the
following procedure:

1 Type xpctargetping at the MATLAB command prompt.

2 Wait for the system to return from the xpctargetping command. If
xpctargetping finds a working connection between the host computer and
target computer, the response is something like:

ans =

success

3 Restart the target object.

Alternatively, you can increase the timeout value, using the following
procedure:

1 In your Simulink model, select Simulation > Model Configuration
Parameters, and navigate to the xPC Target options node.

16-4

Boards with Slow Initialization

2 Clear the Use default communication timeout parameter.

The Specify the communication timeout in seconds parameter
appears.

3 Specify a new timeout value, in seconds. For example, enter 20 in
parameter Specify the communication timeout in seconds.

4 Click OK.

5 In the Simulink Editor window and from the Code menu, click C/C++
Code > Build Model.

In this case, the host computer waits for about 20 seconds before declaring
that a timeout has occurred. It does not take 20 seconds for every download.
The host computer polls the target computer about once every second, and
if a response is returned, returns the success value. Only in the case where
a download really fails does it take the full 20 seconds.

16-5

16 Host-Target Communication

Timeout with Multiple Ethernet Cards
The xPC Target product supports a number of Ethernet cards and chips, as
described in “Network Communication Setup”. If your target computer has
more than one of these cards or chips installed, you could experience timeout
problems. For example, suppose you are using the Network Boot option to
boot the target computer. If the host computer boots the target computer
using Ethernet A on the target computer, it associates the IP address of the
target computer with the Media Access Control (MAC) address of Ethernet
adapter A. If, after it does so, the target computer BIOS connects the target
computer to Ethernet B, the xPC Target software cannot connect the host and
target computers because they are connected to different Ethernet controllers.

First, try to disable or remove the Ethernet controller that you will not use.
For example, if you have both an on-board Ethernet controller and a separate
Ethernet card, you could disable the on-board Ethernet controller through the
target computer BIOS. If you are required to have multiple Ethernet adapters
of the same type in the target computer, you might need to experiment to
determine which Ethernet adapter the software has chosen.

If you are not using the Network Boot option to boot the target computer
and cannot establish communication between the target computer and host
computer:

1 Switch the network cable to the other Ethernet port and try again.

2 If you can establish communication, use this Ethernet port to connect the
host computer to the target computer.

If you are using the Network Boot option and experience this issue, do the
following:

1 Connect the network cable to Ethernet adapter B.

2 In the MATLAB Command Window, type

!arp -d

This command removes the association between the target computer address
and the hardware address of Ethernet adapter A from the cache of the host
computer. This removal allows a new connection (and association) to be made.

16-6

Timeout with Multiple Ethernet Cards

3 Change the Ethernet adapter card that the Network Boot option uses. You
can do this in one of the following ways:

• Change the target computer BIOS to change the Ethernet adapter to the
one that the Network Boot option is looking for.

• Follow the procedure in one of:

- “Ethernet Card Selection by EthernetIndex” on page 4-30

- “Ethernet Card Selection by EthernetIndex: Multiple Target Computers”
on page 4-63

.

16-7

16 Host-Target Communication

Recovery from Board Driver Errors
If an error in a driver causes the xPC Target system to crash, a timeout
occurs and xpctargetping fails with an error message. In such an event, you
need to reboot the target and reestablish communication between the host
computer and target computer.

To get the xPC Target system back up and running:

1 Remove the reference to the problem driver from the model.

2 Reboot the target computer.

3 At the MATLAB command line, issue xpctargetping to reestablish
communications.

4 If the driver with which you are having problems is one provided by
MathWorks, try to pinpoint the problem area (for example, determine
whether certain settings in the driver block cause problems).

Alternatively, you can exit and restart the MATLAB interface.

16-8

How Can I Diagnose Network Problems?

How Can I Diagnose Network Problems?
If you experience network problems when using this product,
use an available computer with Internet access to
refer to the MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/search_results.html?q=product:"xPC+Target
This Web site has the most up-to-date information about this topic.

16-9

http://www.mathworks.com/support/search_results.html?q=product:"xPC+Target"

16 Host-Target Communication

16-10

17

Target Computer Boot
Process

• “Why Won’t the Target Computer Boot?” on page 17-2

• “Why Won’t the Kernel Load?” on page 17-4

• “Why Is the Target Medium Not Bootable?” on page 17-5

• “Why Is the Target Computer Halted?” on page 17-6

17 Target Computer Boot Process

Why Won’t the Target Computer Boot?
If your target computer cannot boot with the xPC Target boot disk, removable
boot drive, or network boot image:

• Recreate the target boot kernel using new media.

• Verify using xpcgetenv that the current properties in the xPC Target
kernel correspond with the environment variables displayed in the
Host-to-Target communication and Target settings panes of xPC
Target Explorer.

Tip To display the allowed values of xPC Target environment properties,
type setxpcenv with no arguments. To display their current values, type
getxpcenv with no arguments.

• Verify that the xPC Target boot disk or removable boot drive contains files
like the following:

- BOOTSECT.RTT

- XPCTGB1.RTA

Note The name of the last file varies depending on the communication
method.

• If any of these files are not present, reinstall the software to fix any
corrupted files from the previous installation.

• The xPC Target kernel may not be able to discover system hardware not
compliant with the Advanced Configuration and Power Interface (ACPI)
standard. To allow the kernel to discover such hardware, use the following
xPC Target environment property to access the legacy MPFPS in the
computer BIOS:

setxpcenv('LegacyMultiCoreConfig', 'on')

17-2

Why Won’t the Target Computer Boot?

• If you are doing a network boot and the boot procedure displays a message
similar to TFTP Timeout:

- Verify that the xpctftpserver program is running. If it is not, recreate
the network boot image.

- Temporarily disable the Internet security (firewall) software on the host
computer. If you can now boot:

• Follow the Internet security software instructions to allow the xPC
Target boot procedure to work in its presence. For example, add the
MATLAB interface to the firewall exception list.

• Reenable the Internet security software.

• If problems persist, see the questions and answers for Target Computer
Boot Process.

• If you still cannot boot the target computer from a boot disk or removable
boot drive, you might need to replace the target computer disk drive
hardware.

17-3

17 Target Computer Boot Process

Why Won’t the Kernel Load?
When booting the target computer, you might see a message like the following:

xPC Target 4.X loading kernel..@@@@@@@@@@@@@@@@@@@@@@

The target computer displays this message when it cannot read and load
the kernel from the target boot disk.

The probable cause is a bad boot kernel. To diagnose this problem, recreate
the target boot kernel. If you have a removable boot drive, reformat the drive
or use a new formatted drive. If you have a boot CD, create a new boot disk. If
you are using network boot, recreate the network boot image.

17-4

Why Is the Target Medium Not Bootable?

Why Is the Target Medium Not Bootable?
When booting the target computer, you might get a message similar to the
following:

Not a bootable medium or NTLDR is missing

Selecting either DOS Loader or Stand Alone mode instead of Removable
Disk mode can cause this message.

To solve this problem:

1 Type xpcexplr in the MATLAB Command Window.

2 In the Targets pane, expand the target computer node.

3 Click the Target Properties icon in the toolbar or double-click
Properties.

4 Select Boot configuration and select the desired entry in the Boot mode
list.

5 Click Create boot disk..

17-5

17 Target Computer Boot Process

Why Is the Target Computer Halted?
If your target computer displays a System Halted message while booting:

• Verify in the Host-to-Target communication pane of xPC Target
Explorer that the Target driver parameter is configured as required by
your network.

• Recreate the target boot kernel using new media and use the new kernel
to boot the target computer.

• Verify that the xPC Target software supports your target computer
hardware. Be sure to verify the network communication hardware.

17-6

18

Modeling

• “How Do I Handle Encoder Register Rollover?” on page 18-2

• “How Can I Write Custom Device Drivers?” on page 18-3

18 Modeling

How Do I Handle Encoder Register Rollover?
Encoder boards have a fixed size counter register of 16 bits, 24 bits, or 32 bits.
Regardless of the size, the register always eventually overflows and rolls over.
Registers can roll over in either the positive or negative direction.

Some boards provide a hardware mechanism to account for overflows or
rollovers. As a best practice, you should design your model to always deal
with overflows or rollovers. Defining an initial count can handle the issue
for some applications.

To handle register rollovers, you can use standard Simulink blocks to design
the following counter algorithm types:

• Rollover Counter — Counts the number of times the output of an encoder
block has rolled over. This counter should count up for positive direction
rollovers and down for negative direction rollovers.

• Extended Counter — Provides a rollover count not limited by register size.
For an n-bit register, this counter should be able to count values greater
than 2^(n-1).

The Incremental Encoder/Utilities/Rollover sublibrary of the xPC Target
library contains example blocks for these two types of counters. See Rollover
Counter and Extended Counter for further details. You can use these blocks
in your model as is, or modify them for your model. Connect the output of the
encoder block to these blocks.

Note To view the algorithms used in these implementations, right-click the
subsystem and select Mask > Look Under Mask.

Keep the following requirements in mind when using these blocks:

• Some driver blocks allow an initial starting value to be loaded into the
register. You must pass this value to the rollover blocks to adjust for
that offset.

• The rollover block needs to know how many counts each rollover represents.
Typically, this number is 2^n, where n is the size of the register in bits.

18-2

How Can I Write Custom Device Drivers?

How Can I Write Custom Device Drivers?
You might want to write your own driver if you want to include an
unsupported device driver in your xPC Target system. See “Custom Device
Drivers”.

Before you consider writing custom device drivers for the xPC Target system,
you should possess:

• Good C programming skills

• Knowledge of writing S-functions and compiling those functions as C-MEX
functions

• Knowledge of SimStruct, a MATLAB Simulink C language header file that
defines the Simulink data structure and the SimStruct access macros. It
encapsulates all the data relating to the model or S-function, including
block parameters and outputs.

• An excellent understanding of the I/O hardware. Because of the real-time
nature of the xPC Target system, you must develop drivers with minimal
latency. Because most drivers access the I/O hardware at the lowest
possible level (register programming), you must have a good understanding
of how to control a board with register information and have access to the
register-level programming manual for the device.

• A good knowledge of port and memory I/O access over various buses. You
need this information to access I/O hardware at the register level.

18-3

18 Modeling

18-4

19

Model Compilation

• “Requirements for Standalone Target Applications” on page 19-2

• “Compiler Errors from Models Linked to DLLs” on page 19-3

• “Compilation Failure with WATCOM Compilers” on page 19-4

19 Model Compilation

Requirements for Standalone Target Applications
You can use either the xPC Target API dynamic link library (DLL) or the
xPC Target component object model (COM) API library to create a custom
standalone interface to control a real-time application running on the target
computer. To deploy these standalone applications, you must have the xPC
Target Embedded Option license. Without this license, you can create and use
the standalone application in your environment, but you cannot deploy that
application on another host computer that does not contain your licensed copy
of the xPC Target software.

See “Stand Alone Boot Method”.

19-2

Compiler Errors from Models Linked to DLLs

Compiler Errors from Models Linked to DLLs
The xPC Target software supports links to static link libraries (.lib) only, not
links to dynamic link libraries (.dll). When you compile your models, verify
that you link only to static link libraries. Linking to static libraries is not an
issue when you compile with xPC Target S-functions.

19-3

19 Model Compilation

Compilation Failure with WATCOM Compilers
The Open WATCOM compiler is no longer supported. Use a Microsoft
compiler instead.

19-4

20

Application Download

• “Why Does My Download Time Out?” on page 20-2

• “Increase the Time for Downloads” on page 20-4

• “Why Does the Download Halt?” on page 20-5

20 Application Download

Why Does My Download Time Out?
If the host computer and target computer are not connected, or you have
not entered the required environment properties, the download process
terminates after about 5 seconds with a timeout error. Be sure that you have
followed the instructions outlined in “Host-Target Configuration” before
continuing.

To diagnose the problem, use the following procedure:

1 Type xpcexplr in the MATLAB Command Window.

2 In the Targets pane, expand the target computer node.

3 Click the Target Properties icon in the toolbar or double-click
Properties.

4 Select Host-to-Target communication and make any required changes
to the communication properties.

Note RS-232 host-target communication mode will be removed in a future
release. Use TCP/IP instead.

5 Select Boot configuration and click Create boot disk.

6 Reboot the target computer and try downloading the application again.

7 In some cases, the download might have completed even though you get a
timeout error. To detect this condition, wait until the target screen displays

System:initializing application finished.

8 Type xpctargetping at the MATLAB command prompt.

If xpctargetping finds a working connection between the host computer
and target computer, the response is something like:

ans =

20-2

Why Does My Download Time Out?

success

9 Right-click the target computer in question and select Connect.

If the connection resumes, the connection is all right. If the connection
times out consistently for a particular model, the timeout needs to be
increased. See “Increase the Time for Downloads” on page 20-4.

For information on setting up the xPC Target environment, see either “RS-232
Settings” or “ISA Bus Ethernet Settings”, and then see “Target Boot Methods”.

20-3

20 Application Download

Increase the Time for Downloads
By default, if the host computer does not get a response from the target
computer after downloading a target application and waiting about 5 seconds,
the host computer software times out. On the other hand, the target computer
responds only after downloading and initializing the target application.

Usually 5 seconds is enough time to download a target application, but
in some cases it may not be long enough. The time to download a target
application mostly depends on your I/O hardware. For example, thermocouple
hardware takes longer to initialize. In this case, even though the target
computer is fine, a false timeout is reported.

You can increase the timeout value in one of the following ways:

• At the model level, open the Simulink > Model Configuration
Parameters dialog box and navigate to the xPC Target options node.
Clear the Use default communication timeout parameter and enter a
new desired timeout value in the Specify the communication timeout
in seconds parameter. For example, enter 20 to increase the value to 20 s.

• At the target application level, use the target application
xpctarget.xpc.set (target application object) method to set
the CommunicationTimeOut property to the desired timeout value. For
example, to increase the value to 20 s:

tg.set('CommunicationTimeOut',20)

For both methods, the host computer polls the target computer about once
every second, and if a response is returned, returns the success value. Only if
a download really fails does the host computer wait the full twenty seconds.

20-4

Why Does the Download Halt?

Why Does the Download Halt?
If the MATLAB interface freezes and there are target ping errors, this failure
is likely the result of an active firewall, a long initialization process, or both
combined. To diagnose this problem, see:

• “Is There Communication Between the Computers?” on page 16-2

• “Boards with Slow Initialization” on page 16-4

“Timeout with Multiple Ethernet Cards” on page 16-6

20-5

20 Application Download

20-6

21

Application Execution

• “View Application Execution from the Host” on page 21-2

• “Sample Time Deviates from Expected Value” on page 21-3

• “What Measured Sample Time Can I Expect?” on page 21-5

• “Why Has the Stop Time Changed?” on page 21-6

• “Why Is the Web Interface Not Working?” on page 21-7

21 Application Execution

View Application Execution from the Host
xPC Target displays output from the target application on the target computer
monitor. You can view this monitor from the host computer using Real-Time
xPC Target Spy.

For a single-target system, type:

xpctargetspy

For a particular target computer TargetPC1, type:

xpctargetspy('TargetPC1')

The xPC Target Spy window is displayed on the host computer monitor.

21-2

Sample Time Deviates from Expected Value

Sample Time Deviates from Expected Value
You might notice that the sample time you measure from your model is not
equal to the sample time you requested. This difference depends on your
hardware. Your model sample time is as close to your requested time as the
hardware allows.

However, hardware does not allow infinite precision in setting the spacing
between the timer interrupts. This limitation can cause the divergent sample
times.

For all PCs, the only timer that can generate interrupts is based on a 1.193
MHz clock. For the xPC Target system, the timer is set to a fixed number
of ticks of this frequency between interrupts. If you request a sample time
of 1/10000 seconds, or 100 microseconds, you do not get exactly 100 ticks.
Instead, the xPC Target software calculates that number as:

100 x 10-6 s X 1.193 x 106 ticks/s = 119.3 ticks

The xPC Target software rounds this number to the nearest whole number,
119 ticks. The actual sample time is then:

119 ticks/(1.193 X 106 ticks/s) = 99.75 X 10-6 s
(99.75 microseconds)

Compared to the requested original sample time of 100 microseconds, this
value is 0.25% faster.

As an example of how you can use this value to derive the expected deviation
for your hardware, assume the following:

• Output board that generates a 50 Hz sine wave (expected signal)

• Sample time of 1/10000

• Measured signal of 50.145 Hz

The difference between the expected and measured signals is 0.145 Hz, which
deviates from the expected signal value by 0.29% (0.145 / 50). Compared
to the previously calculated value of 0.25%, there is a difference of 0.04%
from the expected value.

21-3

21 Application Execution

If you want to further refine the measured deviation for your hardware,
assume the following:

• Output board that generates a 50 Hz sine wave (expected signal)

• Sample time of 1/10200

• Measured signal of 50.002 Hz

1/10200 s X 1.193 x 106 ticks/s = 116.96 ticks

Round this number to the nearest whole number of 117 ticks. The resulting
frequency is then

(116.96 ticks/117)(50) = 49.983 Hz

The difference between the expected and measured signal is 0.019, which
deviates from the expected signal value by 0.038% (0.019 / 50.002). The
deviation when the sample time is 1/10000 is 0.04%.

Some amount of error is common for most PCs, and the margin of error varies
from machine to machine.

Note Most high-level operating systems, like Microsoft Windows or Linux®,
occasionally insert extra long intervals to compensate for errors in the timer.
Be aware that the xPC Target software does not attempt to compensate for
timer errors. For this product, close repeatability is more important for most
models than exact timing. However, some chips might have inherent designs
that produce residual jitters that could affect your system. For example,
some Intel® Pentium chips might produce residual jitters on the order of 0.5
microsecond from interrupt to interrupt.

21-4

What Measured Sample Time Can I Expect?

What Measured Sample Time Can I Expect?
The xPC Target kernel is tuned for minimal overhead and maximum
performance. On the target computer, the kernel dedicates all of its resources
to the target application. To check what sample time you can expect, run
xpcbench at the MATLAB command line.

• xpcbench('this')— Evaluates your target computer against predefined
benchmarks and compares it to other target computers. The results
indicate the smallest base sample time that an xPC Target application
can achieve on your system.

• xpcbench('model') — Evaluates your target computer against your
specific model.

Actual obtainable sample times depend on a number of factors, including:

• Processor performance

• Model complexity

• I/O block types

• Number of I/O channels

21-5

21 Application Execution

Why Has the Stop Time Changed?
If you change the step size of a target application after it has been built, it
is possible that the target application will execute for fewer steps than you
expect. The number of execution steps is:

floor(stop time/step size)

When you compile code for a model, Simulink Coder calculates a number of
steps based on the current step size and stop time. If the stop time is not an
integral multiple of the step size, Simulink Coder adjusts the stop time for
that model based on the original stop time and step size. If you later change a
step size for a target application but do not recompile the code, xPC Target
uses the new step size and the previously adjusted stop time. The resulting
model may execute for fewer steps than you expect.

For example, if a model has a stop time of 2.4 and a step size of 1, Simulink
Coder adjusts the stop time of the model to 2 at compilation. If you change
the step size to 0.6 but do not recompile the code, the expected number of
steps is 4, but the actual number of steps is 3 because xPC Target uses the
previously adjusted stop time of 2.

To avoid this problem, verify that the original stop time (as specified in the
model) is an integral multiple of the original step size.

21-6

Why Is the Web Interface Not Working?

Why Is the Web Interface Not Working?
The Web interface to the target computer requires a connection between a
Web browser and the IP address and port by which you access the target. If
this IP address and port is already in use because you connected to the target
via Simulink, xPC Target Explorer, or a MATLAB command such as xpc, the
Web interface cannot connect and will fail.

Tip Type the MATLAB command xpcwwwenable immediately before opening
the Web interface.

21-7

21 Application Execution

21-8

22

Application Parameters

• “Why Does the getparamid Function Return Nothing?” on page 22-2

• “Can I Tune All the Model Parameters?” on page 22-3

22 Application Parameters

Why Does the getparamid Function Return Nothing?
The xpctarget.xpc.getparamid and xpctarget.xpc.getsignalid functions
accept block_name parameters. For these functions, enter for block_name the
mangled name that the Simulink Coder software uses for code generation.
You can determine the block_name as follows:

• If you do not have special characters in your model, use the gcb function.

• If the blocks of interest have special characters, retrieve the mangled name
with tg.showsignals='on' or tg.showparam = 'on'.

For example, if carriage return '\n' is part of the block path, the mangled
name returns with carriage returns replaced by spaces.

22-2

Can I Tune All the Model Parameters?

Can I Tune All the Model Parameters?
Observable parameters are those you can tune. Nonobservable parameters
are those that exist in the target application, but are not tunable from the
host computer. You cannot tune parameters of complex or multiword data
types. You can tune fixed-point data types, including Boolean, integer, and
double. For more on fixed-point data types, see “Supported Data Types”.

22-3

22 Application Parameters

22-4

23

Application Signals

• “How Do I Fix Invalid File IDs?” on page 23-2

• “Can I Access All the Model Signals?” on page 23-3

23 Application Signals

How Do I Fix Invalid File IDs?
You might get Error -10: Invalid File ID on the target computer if you
are acquiring signal data with a file scope. This error occurs because the size
of the signal data file exceeds the available space on the disk. The signal data
is most likely corrupt and irretrievable. You should delete the signal data file
and reboot the xPC Target system. To prevent this occurrence, monitor the
size of the signal data file as the scope acquires data.

Refer to the MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/search_results.html?q=product:"xPC+Target
for additional information.

23-2

http://www.mathworks.com/support/search_results.html?q=product:"xPC+Target"

Can I Access All the Model Signals?

Can I Access All the Model Signals?
You cannot directly access or tag signals from virtual buses or blocks. To
observe a virtual block:

1 Add a unity Gain block (a Gain block with a gain of 1.0) to the model.

2 Connect the signal output of the virtual block to the input of the unity
Gain block.

3 Access or tag the output signal of the unity Gain block.

To observe a virtual bus, add a unity Gain block to each individual signal.

You cannot directly access signals you have optimized with block reduction
optimization. Access these signals by making them test points.

You cannot access signals of complex or multiword data types.

23-3

23 Application Signals

23-4

24

Application Performance

• “How Can I Improve Run-Time Performance?” on page 24-2

• “Why Does Model Execution Produce CPU Overloads?” on page 24-4

• “How Small Can the Sample Time Be?” on page 24-6

• “Can I Allow CPU Overloads?” on page 24-7

24 Application Performance

How Can I Improve Run-Time Performance?
To improve runtime performance and reduce the task execution time (TET)
of a model model:

1 Run xpcbench at the MATLAB command line:

• xpcbench('this')— Evaluates your target computer against predefined
benchmarks and compares it to other target computers. The results
indicate the smallest base sample time that an xPC Target application
can achieve on your system.

• xpcbench('model') — Evaluates your target computer against your
specific model.

Tip For more information on xPC Target benchmarking,
see http://www.mathworks.com/support/product/XP/-
productnews/benchmarks.html.

2 If your target computer is not high on the list of benchmark computers,
consider switching to a target computer with higher performance.

3 Run the xPC Target profiler on model and record where the time is being
spent. (See “Profiling Target Application Execution” on page 26-6.)

4 If the model contains many states (for example, more than 20 states), clear
the States check box in the Data Import/Export pane of the Configuration
Parameters dialog box. This disables state logging, making more memory
available for the target application. An alternative to logging all the state
signals is to select individual states of interest by adding Outport blocks to
the model.

5 Clear all the Save to workspace check boxes in the Data Import/Export
pane of the Configuration Parameters dialog box (Time, States, Output,
Final states, Signal logging). This turns logging off, making more
computing time available for calculating the model.

24-2

http://www.mathworks.com/support/product/XP/productnews/benchmarks.html
http://www.mathworks.com/support/product/XP/productnews/benchmarks.html

How Can I Improve Run-Time Performance?

6 Clear the Log Task Execution Time check box in the xPC Target options
pane of the Configuration Parameters dialog box. This disables TET logging
for the application.

7 Increase Fixed-step size (fundamental sample time) in the Solver pane
of the Configuration Parameters dialog box. Executing with a very short
sample time might overload the CPU.

8 Use polling mode, if you do not need background processes (see “Polling Mode”
on page 6-5 for more on setting this mode).

9 Disable the target scope display. To do this, clear the Graphics mode check
box in the Target settings pane of xPC Target Explorer.

10 Use fewer scopes in the model.

11 Reduce the number of I/O channels in the model.

12 Consider partitioning the model and running it on a multicore system (see
“Design Considerations”).

Note To use your target computer in multicore mode, you must set the
Multicore CPU check box in the Target settings pane of xPC Target
Explorer.

13 Consider partitioning the model and running it on multiple target computers.
This optimization might require multitarget synchronization using CAN,
UDP, parallel port, or reflective memory.

14 Check the questions and answers under Application Performance for tips on
eliminating CPU overloads and improving task execution time.

15 Check the MathWorks Support Web site and MATLAB Central for other tips.
See “Where Is the MathWorks Support Web Site?” on page 25-2.

16 Call MathWorks Technical Support. See “How Do I Contact MathWorks
Technical Support?” on page 25-5.

24-3

24 Application Performance

Why Does Model Execution Produce CPU Overloads?
A CPU overload indicates that the CPU was unable to complete processing a
model time step before being asked to restart. When an overload occurs, one
of the following can happen:

• The xPC Target kernel halts model execution.

• If the overload is allowed, the model execution continues until a predefined
event (see “Can I Allow CPU Overloads?” on page 24-7 for details). If a
model continues running after a CPU overload, the model time step is as
long as the time required to finish the execution. This behavior delays the
following time step.

This error might occur if you have:

• Real CPU overloads— Those caused by model design or target computer
resources. For example, a model is trying to do more than can be done in
the allocated time on the target computer. Possible reasons are:

- The target computer is too slow or the model sample time is too small
(see “How Small Can the Sample Time Be?” on page 24-6).

- The model is too complex (algorithmic complexity).

- I/O latency, where each I/O channel used introduces latency into the
system. This might cause the execution time to exceed the model time
step.

To address I/O latency, you can use the xPC Target Interactive Guide
(http://www.mathworks.com/support/product/XP/productnews/-
interactive_guide/xPC_Target_Interactive_Guide.html)
to find latency numbers for boards supported by the block library.
For example, if your application includes the National Instruments®

PCI-6713 board, and you want to use four outputs:

1 Look up the board in the xPC Target Interactive Guide.

From the table, the D/A latency is 1+2.4N.

2 To get the latency for four outputs, calculate the latency

1+(2.4 x 4) = 10.6 microseconds

24-4

http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html
http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html

Why Does Model Execution Produce CPU Overloads?

3 Include this value in your sample time calculations.

• Spurious CPU overloads — Commonly caused by factors outside of
the model design. These overloads are most likely caused by one of the
following:

- Advanced Power Management

- Plug-and-Play (PnP) operating system

- System Management Interrupts (SMIs)

Enabling any of these properties causes non-real-time behavior from the
target computer. You must disable these BIOS properties for the target
computer to run the target application in real time. See“Target Computer
BIOS Settings”.

Note You cannot always disable SMIs from your BIOS. However, for some
chipsets, you can programmatically prevent or disable SMIs. For example,
see the Disabling SMIs on Intel ICH5 Chipsets document at MATLAB
Central for a solution to disabling SMIs in the Intel ICH5 family.

For further information and test models, see the xPC Target CPU Overloads
document at MATLAB Central.

24-5

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18832&objectType=file
http://www.mathworks.com/matlabcentral/fileexchange/23507

24 Application Performance

How Small Can the Sample Time Be?
If the model has too small a sample time, a CPU overload can occur. This
error indicates that to run the target application, executing one step of the
model requires more time than the sample time for the model (Fixed step
size property) allows.

When this error occurs, the target object property CPUoverload changes from
none to detected. To diagnose the issue:

1 Run xpcbench at the MATLAB command line:

• xpcbench('this')— Evaluates your target computer against predefined
benchmarks and compares it to other target computers. The results
indicate the smallest base sample time that an xPC Target application
can achieve on your system.

• xpcbench('model') — Evaluates your target computer against your
specific model.

Tip For more information on xPC Target benchmarking,
see http://www.mathworks.com/support/product/XP/-
productnews/benchmarks.html.

2 Change the model Fixed step size property to at least the indicated
value and rebuild the model. Use the Solver node in the Simulink model
Configuration Parameters dialog.

3 If these steps do not solve your problem, see:

“How Can I Improve Run-Time Performance?” on page 24-2.

24-6

http://www.mathworks.com/support/product/XP/productnews/benchmarks.html
http://www.mathworks.com/support/product/XP/productnews/benchmarks.html

Can I Allow CPU Overloads?

Can I Allow CPU Overloads?
Typically, the xPC Target kernel halts model execution when it encounters
a CPU overload. You can direct the xPC Target environment to allow CPU
overloads using the following options in the TLC options parameter in the
Code Generation pane of the Simulink Configuration Parameters dialog box.

Option Description Default

xPCMaxOverloads Number of acceptable overloads. 0

xPCMaxOverloadLen Number of contiguous
acceptable overloads. If
you do not specify this option,
the default value is the same
as xPCMaxOverloads. Specify
a value that is the same or
less than the value for the
xPCMaxOverloads option. You
should not a use a value greater
than xPCMaxOverloads.

Same as value of
xPCMaxOverloads

xPCStartupFlag Number of executions of
the model at startup,
where the timer interrupt
is temporarily disabled during
model execution. After the
model finishes the first
xPCStartupFlag number of
executions, the xPC Target
software enables the timer
interrupt, which will invoke the
next execution for the model.

1

If you experience a CPU overload after the model starts, the software ignores
timer interrupts if the task is already running. The model continues running,
subject to the values of xPCMaxOverloads and xPCMaxOverloadLen. The
model then executes at the next step.

Consider the following cases:

24-7

24 Application Performance

• xPCMaxOverloads is 2. The software tolerates the first two overloads and
stops execution at the third.

• xPCMaxOverloads is 3 and xPCMaxOverloadLen is 2. The software tolerates
the first three overloads and halts the model at the fourth.

• xPCStartupFlag is 4. The kernel ignores all overloads for the first four
executions.

The three properties interact. When the xPC Target kernel runs the model, it
checks the number of CPU overloads against the values of xPCMaxOverloads
and xPCMaxOverloadLen. When the number of CPU overloads reaches the
lower of these two values, the kernel stops executing the model.

Suppose you enter a line like the following for the TLC options parameter:

24-8

Can I Allow CPU Overloads?

-axPCMaxOverloads=30 -axPCOverLoadLen=2 -axPCStartupFlag=5

The software ignores CPU overloads for the first five iterations through the
model. After this, the software allows up to 30 CPU overloads, preventing no
more than two consecutive CPU overloads.

With the TLC options, you can use the following blocks in your model to
monitor CPU overloads.

• Use the xPC Target Get Overload Counter and xPC Target Set Overload
Counter blocks to set and keep track of CPU overload numbers.

• Use the Pentium Time Stamp Counter block to profile your model.

24-9

24 Application Performance

24-10

25

Getting MathWorks
Support

• “Where Is the MathWorks Support Web Site?” on page 25-2

• “How Do I Get a Software Update?” on page 25-3

• “What Should I Do After Updating Software?” on page 25-4

• “How Do I Contact MathWorks Technical Support?” on page 25-5

25 Getting MathWorks Support

Where Is the MathWorks Support Web Site?
For xPC Target solutions and guidelines, see the following MathWorks Web
site resources:

• MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/search_results.html?q=product:"xPC+Targ

The xPC Target documentation is also available from this site.

• MATLAB Central File Exchange
(http://www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target)

25-2

http://www.mathworks.com/support/search_results.html?q=product:"xPC+Target"
http://www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target

How Do I Get a Software Update?

How Do I Get a Software Update?
1 Navigate to the MathWorks download page
(http://www.mathworks.com/downloads/).

2 Navigate to the page for the xPC Target software version you want and
download it to your host computer.

3 Install and integrate the new release software.

4 Recreate your xPC Target environment. (See “What Should I Do After
Updating Software?” on page 25-4.)

25-3

http://www.mathworks.com/downloads/

25 Getting MathWorks Support

What Should I Do After Updating Software?
If you are working with a new xPC Target release, either downloaded from
the MathWorks download page (http://www.mathworks.com/downloads/) or
installed from a DVD, you must do the following:

1 Type xpcexplr in the MATLAB Command Window.

2 In the Targets pane, expand the target computer node.

3 Click the Target Properties icon in the toolbar or double-click
Properties.

4 Select Host-to-Target communication and recreate your xPC
Target environment (see “Serial Communication Setup” or Network
Communication).

Note RS-232 host-target communication mode will be removed in a future
release. Use TCP/IP instead.

5 Select Boot configuration and click Create boot disk.

6 Reboot the target computer.

7 In the Simulink Editor window and from the Code menu, click C/C++
Code > Build Model for each model to be executed.

25-4

http://www.mathworks.com/downloads/

How Do I Contact MathWorks Technical Support?

How Do I Contact MathWorks Technical Support?
1 If you cannot solve your problem, call function getxpcinfo to retrieve
diagnostic information for your xPC Target configuration. This function
writes the diagnostic information to the file xpcinfo.txt in the current folder.

Note The xpcinfo.txt file might contain information sensitive to your
organization. Review the contents of this file before disclosing it to
MathWorks.

2 Contact MathWorks directly for online or phone support:
http://www.mathworks.com/support/contact_us

25-5

http://www.mathworks.com/support/contact_us

25 Getting MathWorks Support

25-6

26

Tuning Performance

• “Building Referenced Models in Parallel” on page 26-2

• “Multicore Processor Configuration” on page 26-4

• “Profiling Target Application Execution” on page 26-6

26 Tuning Performance

Building Referenced Models in Parallel
The xPC Target software allows you to build referenced models in parallel
on a compute cluster. In this way, you can more quickly build and download
xPC Target applications to the target computer.

Note The following procedure assumes you have a functioning xPC Target
installation on your host computer.

1 Identify a set of worker computers, which might be separate cores on your
host computer or computers in a remote cluster running under Windows.

2 If you intend to use separate cores on the host computer, install Parallel
Computing Toolbox™ on the host computer.

3 If you intend to use computers in a remote cluster:

a Install the following on each cluster computer:

• MATLAB

• Parallel Computing Toolbox

• MATLAB Distributed Computing Server™

• xPC Target

• Build compiler

Tip Install the same compiler and compiler version at the same
location as on the host computer.

b Start and configure the remote cluster according to the instructions at
http://www.mathworks.com/support/product/DM/installation/ver_current/.

4 Run MATLAB on the host computer.

5 In MATLAB, type matlabpool to open a MATLAB pool.

26-2

http://www.mathworks.se/support/product/DM/installation/ver_current/

Building Referenced Models in Parallel

6 Type pctRunOnAll to configure the compiler for all of the remote workers.
For example:

pctRunOnAll('xpcsetCC(''VisualC'',

''C:\Program Files\Microsoft Visual Studio 9.0'')')

In this configuration, the host computer and all of the remote workers have
installed Microsoft Visual Studio 9.0 at C:\Program Files\Microsoft
Visual Studio 9.0.

7 Build and download your model.

See “Reduce Build Time for Referenced Models” for more about increasing
the speed of parallel builds.

26-3

26 Tuning Performance

Multicore Processor Configuration
For better performance on your target computer, you can run multirate target
applications on multiple cores. Use this capability if your target computer
has a multicore processor and you want to take advantage of it for multirate
models. Before you consider enabling this capability, see “Target Computer
BIOS Settings” for the effects of BIOS settings.

To build and download multirate models on your multiple core target
computer:

1 Type xpcexplr in the MATLAB Command Window.

2 In the Targets pane, expand the target computer node.

3 Click the Target Properties icon in the toolbar or double-click
Properties.

4 Select theMulticore CPU check box in the Target settings pane.

5 Open your model in Simulink Editor.

6 Add a Rate Transition block to transition between rates.

Note Multirate models must use Rate Transition blocks. If your model
uses other blocks for rate transitions, building the model generates an error.

7 Select the Ensure data integrity during data transfer check box of the
Rate Transition block parameters.

8 Clear the Ensure deterministic data transfer (maximum delay)
check box of the Rate Transition block parameters. This forces the Rate
Transition block to use the most recent data available.

Note Because this box is cleared, the transferred data might differ from
run to run.

26-4

Multicore Processor Configuration

9 In Simulink Editor, select View > Model Explorer.

10 In Simulink Model Explorer, right click in theModel Hierarchy pane and
select Configuration > Add configuration for concurrent execution

11 In the new configuration, select Solver.

12 Check Enable concurrent tasking.

13 Click Configure Tasks.

For more on configuring your model for concurrent execution, see “Design
Considerations”.

26-5

26 Tuning Performance

Profiling Target Application Execution

In this section...

“Profiling Overview” on page 26-6

“Configuring Your Model to Collect Profile Data During Execution” on page
26-6

“Displaying and Evaluating Profile Data” on page 26-7

Profiling Overview
You can profile your target computer to see the execution sequence of your
target application and then tune the performance. This process is especially
useful if your target application is configured to take advantage of multicore
processors on the target computer.

To configure your target computer and model to take advantage of multicore
processors, see “Multicore Processor Configuration” on page 26-4.

Profiling your target computer requires these steps:

1 Configure the model to enable the collection of profile data during execution.

2 Display and evaluate the profile data.

Profiling adds a slight increase to the execution time of the target application.

Configuring Your Model to Collect Profile Data During
Execution
To configure your model to collect profile data during execution:

1 In the Simulink editor window, select Simulation > Model
Configuration Parameters.

2 Open node xPC Target options from node Code Generation.

3 Select Enable profiling.

26-6

Profiling Target Application Execution

4 Type a value for the Number of events parameter.

By default, the software logs 5000 events for profiling. You can increase
or decrease this number. When the software logs the specified number of
events or the model stops, the software stops collecting the data and writes
it to current_working_folder\xPCTrace.csv on the target computer.

5 Save your changes.

To try this procedure with a preconfigured model, use:

matlabroot\toolbox\rtw\targets\xpc\xpcdemos\xpcprofdemo

To build, download, and display the profile data, use a profiling script as
described in “Displaying and Evaluating Profile Data” on page 26-7.

Displaying and Evaluating Profile Data
To see the profile data that your model collects during execution on the target
computer, you run a profiling script.

If you have not yet done so, see “Configuring Your Model to Collect Profile
Data During Execution” on page 26-6.

In the MATLAB Command Window, run the script:

matlabroot\toolbox\rtw\targets\xpc\xpcdemos\profile_xpc_demo.m

This script:

1 Builds and downloads the model that you used to
collect the profile data. By default, the script uses
matlabroot\toolbox\rtw\targets\xpc\xpcdemos\xpcprofdemo.

2 Saves the data in xPCTrace.csv on the target computer.

xPCTrace.csv is a raw data file that contains information such as a header,
version number, row in which data starts, CPU frequency, and the time of
the first event.

26-7

26 Tuning Performance

3 Transfers xPCTrace.csv from the target computer to the current working
folder of the target computer.

4 On the host computer, organizes the raw data into the profileInfo
structure and displays the profile data in a MATLAB figure window and an
HTML file.

To try this procedure with a example model, use
profile_xpc_demo.m. This example calls the script
matlabroot\toolbox\rtw\targets\xpc\xpcdemos\profile_xpc_demo.m.

To evaluate the displays, see “Interpreting Profile Data” on page 26-8.

Interpreting Profile Data
The MATLAB figure window displays a task activity graph with the following
entries:

26-8

Profiling Target Application Execution

Row Description

Timer interrupt Recorded polling data for interrupts

SubRate2 Recorded polling data for SubRate2 task

SubRate1 Recorded polling data for SubRate1 task

BaseRate Recorded polling data for BaseRate task

The HTML report displays model execution profile results for each task:

26-9

26 Tuning Performance

26-10

Profiling Target Application Execution

Result Description

Maximum
turnaround time

Longest time between when the task starts and
finishes. This time includes task preemptions
(interrupts). If no preemptions occur, the maximum
turnaround time is the same as the maximum task
execution time.

Average turnaround
time

Average time between when the task starts and
finishes. This time includes task preemptions
(interrupts). If no preemptions occur, the average
turnaround time is the same as the average task
execution time.

Maximum execution
time

Longest time between when the task starts
and finishes. This time does not include task
preemptions (interrupts).

Average execution
time

Average time between when the task starts
and finishes. This time does not include task
preemptions (interrupts).

Average sample time Average sample time of the task.

Customizing profile_xpc_demo.m
The profiling script, profile_xpc_demo.m, works with the example model:

matlabroot\toolbox\rtw\targets\xpc\xpcdemos\xpcprofdemo

To customize this script:

1 Configure your model as described in “Configuring Your Model to Collect
Profile Data During Execution” on page 26-6.

2 Copy
matlabroot\toolbox\rtw\targets\xpc\xpcdemos\profile_xpc_demo.m
to your working area and rename the copy. For example, use
the name my_profile_xpc_demo.m.

3 Edit my_profile_xpc_demo.m.

26-11

26 Tuning Performance

4 Notice that the my_profile_xpc_demo.m script uses the profileInfo
structure, which allows you to customize the script. This structure contains
the following fields:

Field Description Values

rawdataonhost Location of the raw data.
If this field does not exist,
the script assumes a value
of 0.

0— Default. Transfer the
raw data from the target
computer to the host.

1—Look for the saved raw
data file xPCTrace.csv in
the current folder on the
host computer.

modelname Name of the model xpcprofdemo — Default.
The name of a model in
the xpcdemos folder.

your_model_name —
Specify the name of your
model that you want to
profile.

noplot Specify whether or not
to display the model
execution plots on the host
computer monitor.

0 — Default. Do not
display the model
execution plots on the
host computer monitor.

1 — Display the model
execution plots on the host
computer monitor.

noreport Specify whether or not to
display the model profiling
result report on the host
computer monitor.

0 — Default. Do not
display the model profiling
result report on the host
computer monitor.

1 — Display the model
profiling result report
on the host computer
monitor.

26-12

Profiling Target Application Execution

5 Change values as desired. For example, to profile your own model, replace
instances of xpcprofdemo with your model name, such as my_xpcprofdemo.

6 Run your custom script.

26-13

26 Tuning Performance

26-14

27

Function Reference

Classes (p. 27-2) xPC Target .NET class descriptions

Target Computers (p. 27-3) Control target computer hardware
and operating system

Target Environments (p. 27-4) Manage target computer
environment collection objects

Target Applications (p. 27-5) Control target application on target
computer

Scopes (p. 27-6) Control scopes on target computer

Parameters (p. 27-7) Read and update target application
parameters

Signals (p. 27-8) Read and update signal values

Data Logs (p. 27-9) Log and read back target computer
data

File Systems (p. 27-10) Control target computer file system
and FTP communication with target
computer

27 Function Reference

Classes
xpctarget Package Package for all xPC Target MATLAB

classes

xpctarget.env Class Stores target environment properties

xpctarget.fs Class Manage the directories and files on
the target computer

xpctarget.fsbase Class Base class of file system and file
transfer protocol (FTP) classes

xpctarget.ftp Class Manage the directories and files on
the target computer via file transfer
protocol (FTP)

xpctarget.targets Class Container object to manage target
computer environment collection
objects

xpctarget.xpc Class Target object representing target
application

xpctarget.xpcfs Class Control and access properties of file
scopes

xpctarget.xpcsc Class Base class for all scope classes

xpctarget.xpcschost Class Control and access properties of host
scopes

xpctarget.xpcsctg Class Control and access properties of
target scopes

27-2

Target Computers

Target Computers
getxpcinfo Retrieve diagnostic information

to help troubleshoot configuration
issues

macaddr Convert string-based MAC address
to vector-based one

xpcbench benchmark

xpcbootdisk Create xPC Target boot disk or DOS
Loader files and confirm current
environment properties

xpcbytes2file Generate file suitable for use by
From File block

xpcexplr Open xPC Target Explorer

xpcgetCC Compiler settings for xPC Target
environment

xpcnetboot Create kernel to boot target
computer over dedicated network

xpcsetCC Compiler settings for xPC Target
environment

xpctarget.xpc Create target object representing
target application

xpctarget.xpc.getxpcpci Determine which PCI boards are
installed in target computer

xpctarget.xpc.targetping Test communication between host
and target computers

xpctargetping Test communication between host
and target computers

xpctargetspy Open Real-Time xPC Target Spy
window on host computer

xpctest Test xPC Target installation

xpcwwwenable Disconnect target computer from
current client application

27-3

27 Function Reference

Target Environments
getxpcenv List environment properties

assigned to MATLAB variable

setxpcenv Change xPC Target environment
properties

xpctarget.env.get (env object) Return target environment property
values

xpctarget.env.set (env object) Change target environment object
property values

xpctarget.targets Create container object to manage
target computer environment
collection objects

xpctarget.targets.Add (env
collection object)

Add new xPC Target environment
collection object

xpctarget.targets.get (env
collection object)

Return target object collection
environment property values

xpctarget.targets.getTargetNames
(env collection object)

Retrieve xPC Target environment
object names

xpctarget.targets.Item (env
collection object)

Retrieve specific xPC Target
environment (env) object

xpctarget.targets.makeDefault
(env collection object)

Set specific target computer
environment object as default

xpctarget.targets.Remove (env
collection object)

Remove specific xPC Target
environment object

xpctarget.targets.set (env
collection object)

Change target object environment
collection object property values

27-4

Target Applications

Target Applications
xpctarget.xpc Create target object representing

target application

xpctarget.xpc.close Close serial port connecting host
computer with target computer

xpctarget.xpc.get (target
application object)

Return target application object
property values

xpctarget.xpc.load Download target application to
target computer

xpctarget.xpc.reboot Reboot target computer

xpctarget.xpc.set (target
application object)

Change target application object
property values

xpctarget.xpc.start (target
application object)

Start execution of target application
on target computer

xpctarget.xpc.stop (target
application object)

Stop execution of target application
on target computer

xpctarget.xpc.unload Remove current target application
from target computer

27-5

27 Function Reference

Scopes
xpctarget.xpc Create target object representing

target application

xpctarget.xpc.addscope Create scopes

xpctarget.xpc.getscope Scope object pointing to scope
defined in kernel

xpctarget.xpc.remscope Remove scope from target computer

xpctarget.xpcsc.addsignal Add signals to scope represented by
scope object

xpctarget.xpcsc.get (scope
object)

Return property values for scope
objects

xpctarget.xpcsc.remsignal Remove signals from scope
represented by scope object

xpctarget.xpcsc.set (scope
object)

Change property values for scope
objects

xpctarget.xpcsc.start (scope
object)

Start execution of scope on target
computer

xpctarget.xpcsc.stop (scope
object)

Stop execution of scope on target
computer

xpctarget.xpcsc.trigger Software-trigger start of data
acquisition for scope(s)

27-6

Parameters

Parameters
xpctarget.xpc Create target object representing

target application

xpctarget.xpc.getparam Value of target object parameter
index

xpctarget.xpc.getparamid Parameter index from parameter list

xpctarget.xpc.getparamname Block path and parameter name
from index list

xpctarget.xpc.loadparamset Restore parameter values saved in
specified file

xpctarget.xpc.saveparamset Save current target application
parameter values

xpctarget.xpc.setparam Change writable target object
parameters

27-7

27 Function Reference

Signals
xpctarget.xpc Create target object representing

target application

xpctarget.xpc.getsignal Value of target object signal index

xpctarget.xpc.getsignalid Signal index or signal property from
signal list

xpctarget.xpc.getsignalidsfromlabelReturn vector of signal indices

xpctarget.xpc.getsignallabel Return signal label

xpctarget.xpc.getsignalname Signal name from index list

27-8

Data Logs

Data Logs
xpctarget.xpc Create target object representing

target application

xpctarget.xpc.getlog All or part of output logs from target
object

27-9

27 Function Reference

File Systems
xpctarget.fs Create xPC Target file system object

xpctarget.fs.diskinfo Information about target computer
drive

xpctarget.fs.fclose Close open target computer file(s)

xpctarget.fs.fileinfo Target computer file information

xpctarget.fs.filetable Information about open files in
target computer file system

xpctarget.fs.fopen Open target computer file for reading

xpctarget.fs.fread Read open target computer file

xpctarget.fs.fwrite Write binary data to open target
computer file

xpctarget.fs.getfilesize Size of file on target computer

xpctarget.fs.readxpcfile Interpret raw data from xPC Target
file format

xpctarget.fs.removefile Remove file from target computer

xpctarget.fs.selectdrive Select target computer drive

xpctarget.fsbase.cd Change folder on target computer

xpctarget.fsbase.dir List contents of current folder on
target computer

xpctarget.fsbase.mkdir Make folder on target computer

xpctarget.fsbase.pwd Current folder path of target
computer

xpctarget.fsbase.rmdir Remove folder from target computer

xpctarget.ftp Create file transfer protocol (FTP)
object

xpctarget.ftp.get (ftp) Retrieve copy of requested file from
target computer

xpctarget.ftp.put Copy file from host computer to
target computer

27-10

28

Functions

fc422mexcalcbits

Purpose Calculate parameter values for Fastcom 422/2-PCI board

Syntax MATLAB command line

[a b] = fc422mexcalcbits(frequency)
[a b df] = fc422mexcalcbits(frequency)

Arguments frequency Desired baud rate for the board

[a b] = fc422mexcalcbits(frequency) accepts a baud rate (in units
of baud/second) and converts this value into two parameters a b. You
must enter these values for the parameter Clock bits of the Fastcom
422/2-PCI driver clock. The desired baud rate (frequency) must range
between 30e3 and 1.5e6, which is a hardware limitation of the clock
circuit.

[a b df] = fc422mexcalcbits(frequency) accepts a baud rate (in
units of baud/second) and converts this value into two parameters a
b. You must enter these values for the parameter Clock bits of the
Fastcom 422/2-PCI driver block. The third value, df, indicates the
actual baud rate that is created by the generated parameters a b. The
clock circuit has limited resolution and is unable to perfectly match an
arbitrary frequency. The desired baud rate (frequency) must range
between 30e3 and 1.5e6, which is a hardware limitation of the clock
circuit.

28-2

getxpcenv

Purpose List environment properties assigned to MATLAB variable

Syntax MATLAB command line

getxpcenv

Description Function to list environment properties. This function displays, in the
MATLAB Command Window, the property names, the current property
values, and the new property values set for the xPC Target environment.

The environment properties define communication between the host
computer and target computer and the type of target boot kernel created
during the setup process.

Tip To access a subset of these properties in xPC Target Explorer:

1 Expand a target computer node in the Targets pane.

2 Click the Target Properties icon in the toolbar or double-click
Properties.

• “Host-to-Target Communication” on page 28-4

• “Target Settings” on page 28-10

• “Boot Configuration” on page 28-14

• “Host Configuration” on page 28-16

28-3

getxpcenv

Host-to-Target Communication

Environment Property Description

HostTargetComm Property values are 'RS232' and
'TcpIp'.

Select RS-232 or TCP/IP from the
Communication type list in the
Target Properties pane of xPC
Target Explorer.

If you select RS-232, you alsomust
set the property RS232HostPort.
If you select TCP/IP, then you
also need to set all properties that
start with TcpIp.

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate Property values are '115200',
'57600', '38400', '19200',
'9600', '4800’, '2400', and
'1200'.

Select 1200, 2400, 48 00, 9600,
19200, 38400, 57600, or 115200
from the Baud rate list in the
Target Properties pane of xPC
Target Explorer.

28-4

getxpcenv

Environment Property Description

RS232HostPort Property values are 'COM1' and
'COM2'.

Select COM1 or COM2 from the
Host port list in the Target
Properties pane of xPC
Target Explorer. The software
automatically determines the
COM port on the target computer.

Before you can select an RS-232
port, you need to set the
HostTargetComm property to
RS232.

TcpIpGateway Property value is
'xxx.xxx.xxx.xxx'.

Enter the IP address for your
gateway in the Gateway box in
the Target Properties pane
of xPC Target Explorer. This
property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this
property. If your LAN does not
use gateways, you do not need to
change this property. Ask your
system administrator.

28-5

getxpcenv

Environment Property Description

TcpIpSubNetMask Property value is
'xxx.xxx.xxx.xxx'.

Enter the subnet mask of your
LAN in the Subnet mask box in
the Target Properties pane of
xPC Target Explorer. Ask your
system administrator for this
value.

For example, your subnet mask
could be 255.255.255.0.

TcpIpTargetAddress Property value is
'xxx.xxx.xxx.xxx'.

Enter a valid IP address for
your target computer in the
IP address box in the Target
Properties pane of xPC Target
Explorer. Ask your system
administrator for this value.

For example, 192.168.0.10.

TcpIpTargetBusType Property values are 'PCI', 'ISA',
and `USB'.

Select PCI, ISA, or USB from the
Bus type list in the Target
Properties pane of xPC Target
Explorer. This property is set by
default to PCI, and determines
the bus type of your target
computer. You do not need to
define a bus type for your host
computer, which can be the same
or different from the bus type in
your target computer.

28-6

getxpcenv

Environment Property Description

If TcpIpTargetBusType is set
to PCI, then the properties
TcpIpISAMemPort and
TcpIpISAIRQ have no effect
on TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values
for TcpIpISAMemPort and
TcpIpISAIRQ.

TcpIpTargetDriver Property values are '3C90x',
`I8254x', 'I82559', 'NE2000',
'NS83815', 'R8139', 'R8168',
`Rhine', 'RTLANCE',
'SMC91C9X', `USBAX772',
`USBAX172', and `Auto'.

Select THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,
Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto
from the Target driver list in
the Target Properties pane of
xPC Target Explorer.

28-7

getxpcenv

Environment Property Description

TcpIpTargetISAIRQ Property value is 'n', where n is
between 5 and 15 inclusive.

Select an IRQ value from the IRQ
list in the Target Properties
pane of xPC Target Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on the ISA-bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings
leads to a conflict in your target
computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

28-8

getxpcenv

Environment Property Description

TcpIpTargetISAMemPort Property value is '0xnnnn'.

Enter an I/O port base address in
the Address box in the Target
Properties pane of xPC Target
Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to around 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/O
port base address and make the
corresponding changes to your
jumper settings.

TcpIpTargetPort Property value is 'xxxxx'.

Enter a port address greater than
20000 in the Port box in the
Target Properties pane of xPC
Target Explorer.

This property is set by default
to 22222. The default value is
higher than the reserved area

28-9

getxpcenv

Environment Property Description

(telnet, ftp, . . .) and is only of
use on the target computer.

Target Settings

Environment Property Description

EthernetIndex Property value is ’n’, where n indicates the index
number for the Ethernet card on a target computer.
Note that the (n-1)th Ethernet card on the target
computer has an index number 'n'. The default index
number is 0.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
booting.

LegacyMultiCoreConfig Property values are 'on' and 'off' (the default).

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

MaxModelSize Property values are '1MB' (the default), '4MB', and
'16MB'.

Select 1 MB, 4 MB, or 16 MB from theModel size list in
the Target Properties pane of xPC Target Explorer.

Choosing the maximum model size reserves the
specified amount of memory on the target computer for
the target application. The remaining memory is used
by the kernel and by the heap for data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve

28-10

getxpcenv

Environment Property Description

enough memory for the target application and creates
an error.

Note

• BootFloppy and DOSLoader modes ignore this value.

• In StandAlone mode, you can only use MaxModelSize
values '1MB' and '4MB'.

MulticoreSupport Property values are 'on' and 'off' (the default).

Select or clear the Multicore CPU check box in the
Target Properties pane of xPC Target Explorer.

If your target computer has multicore processors, set
this value to 'on' to take advantage of these processors
for background tasks. Otherwise, set this value to
'off'.

Name Target computer name.

NonPentiumSupport Property values are 'on' and 'off' (the default).

Select or clear the Target is a 386/486 check box in
the Target Properties pane of xPC Target Explorer.

Set this value to 'on' if your target computer has a
386 or 486 compatible processor. Otherwise, set it to
'off'. If your target computer has a Pentium or higher
compatible processor, selecting this check box will slow
the performance of your target computer.

28-11

getxpcenv

Environment Property Description

SecondaryIDE Property values are 'on' and 'off' (the default).

Select or clear the Secondary IDE check box in the
Target Properties pane of xPC Target Explorer.

Set this value to 'on' only if you want to use the disks
connected to a secondary IDE controller. If you do not
have disks connected to the secondary IDE controller,
leave this value set to 'off'.

ShowHardware Property values are `on' and `off' (the default).

If you create a target boot kernel when ShowHardware
is `on' and boot the target computer with it, the kernel
displays on the target monitor the index, bus, slot,
function, and target driver for each Ethernet card.

Note The host computer cannot communicate with
the target computer after the kernel boots with
ShowHardware set.

TargetRAMSizeMB Property values are 'Auto' (the default) and 'Manual'.

Under RAM size, click the Auto orManual button in
the Target Properties pane of xPC Target Explorer.
If you click Manual, enter the amount of RAM, in
megabytes, installed on the target computer in the
Size(MB) box.

TargetRAMSizeMB defines the total amount of installed
RAM in the target computer. This RAM is used for
the kernel, target application, data logging, and other
functions that use the heap.

If TargetRAMSizeMB is set to Auto, the target
application automatically determines the amount of
memory up to 64 MB. If the target computer does not

28-12

getxpcenv

Environment Property Description

contain more than 64 MB of RAM or you do not want
to use more than 64 MB, select Auto. If the target
computer has more than 64 MB of RAM and you want
to use more than 64 MB, select Manual and enter the
amount of RAM installed in the target computer.

Note The xPC Target kernel can use only 2 GB of
memory.

TargetScope Property values are 'Disabled' and 'Enabled' (the
default).

Select or clear the Graphics mode check box in the
Target Properties pane of xPC Target Explorer.

If you set TargetScope to Disabled, the target
computer displays information as text.

Tip To use all the features of the target scope, you also
need to install a keyboard on the target computer.

USBSupport Property values are 'on' (the default) and 'off'.

Select or clear the USB Support check box in the
Target Properties pane of xPC Target Explorer.

Set this value to 'on' if you want to use a USB port on
the target computer; for example, to connect a USB
mouse. Otherwise, set it to 'off'.

28-13

getxpcenv

Boot Configuration

Environment Property Description

BootFloppyLocation Drive name for creation of target
boot disk.

CDBootImageLocation Location of cdboot.iso file for
creation of CD target boot disk.

DOSLoaderLocation Location of DOSLoader files
to boot target computers from
devices other than floppy disk or
CD.

EmbeddedOption Property values are 'Disabled'
and 'Enabled'. This property is
read only.

Note that the xPC Target
Embedded Option product is
enabled only if you purchase an
additional license.

TargetBoot Property values are
'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot',
and 'StandAlone'.

Select Removable Disk, CD, DOS
Loader, Network, or Stand Alone
from the Boot mode list in the
Target Properties pane of xPC
Target Explorer.

If your license file does not include
the license for the xPC Target
Embedded Option product, your
only options are Removable Disk,
CD, DOS Loader, and Network.
With the xPC Target Embedded

28-14

getxpcenv

Environment Property Description

Option product licensed and
installed, you have the additional
choice of Stand Alone.

Tip Click the Create boot disk
button to create a bootable image
in the specified boot mode.

TargetMACAddress Physical target computer MAC
address from which to accept boot
requests when booting within
a dedicated network. Format
the MAC address as six pairs of
hexadecimal numbers, separated
by colons:

xx:xx:xx:xx:xx:xx

To update the MAC address
in xPC Target Explorer, first
click the Reset button in the
Target Properties pane. You
can then click the Specify new
MAC address button to enter
a MAC address manually in the
MAC address box. If you do not
enter a MAC address manually,
the software will obtain the
MAC address automatically the
next time you restart the target
computer.

28-15

getxpcenv

Host Configuration

Environment Property Description

Version xPC Target version number.
Displayed only from getxpcenv
when called without arguments.

Examples Return the xPC Target environment in the structure shown below. The
output in the MATLAB window is suppressed. The structure contains
three fields for property names, current property values, and new
property values.

env = getxpcenv
env =

propname: {1x25 cell}
actpropval: {1x25 cell}
newpropval: {1x25 cell}

Display a list of the environment property names, current values, and
new values.

env = getxpcenv

See Also setxpcenv | xpcbootdisk

28-16

getxpcinfo

Purpose Retrieve diagnostic information to help troubleshoot configuration
issues

Syntax MATLAB command line

getxpcinfo
getxpcinfo('-a')

Arguments '-a' Appends diagnostic information to an
existing xpcinfo.txt file. If one does not
exist, this function creates the file in the
current folder.

Description getxpcinfo returns diagnostic information for troubleshooting xPC
Target configuration issues. This function generates and saves the
information in the xpcinfo.txt file, in the current folder. If the file
xpcinfo.txt already exists, this function overwrites it with the new
information.

getxpcinfo('-a') appends the diagnostic information to the
xpcinfo.txt file, in the current folder. If the file xpcinfo.txt does
not exist, this function creates it.

You can send the file xpcinfo.txt to MathWorks Technical Support
for evaluation and guidance. To create this file, you must have write
permission for the current folder.

Warning

The file xpcinfo.txtmight contain information sensitive to your
organization. Review the contents of this file before sending
to MathWorks.

28-17

macaddr

Purpose Convert string-based MAC address to vector-based one

Syntax MATLAB command line

macaddr('MAC address')

Argument 'MAC address' String-based MAC address to be converted.

Description The macaddr function converts a string-based MAC address to a
vector-based MAC address. The string-based MAC address should be a
string comprised of six colon-delimited fields of two-digit hexadecimal
numbers.

Examples macaddr('01:23:45:67:89:ab')

ans =

1 35 69 103 137 171

How To • “Model-Based Ethernet Communications”

28-18

setxpcenv

Purpose Change xPC Target environment properties

Syntax MATLAB command line

setxpcenv('property_name', 'property_value')
setxpcenv('prop_name1', 'prop_val1', 'prop_name2',
'prop_val2')
setxpcenv

Arguments property_name Not case sensitive. Property names can be
shortened as long as they can be differentiated
from the other property names.

property_value Character string. Type setxpcenv without
arguments to get a listing of allowed values.
Property values are not case sensitive.

Description Function to enter new values for environment properties. If the new
value is different from the current value, the property is marked as
having a new value.

The environment properties define communication between the host
computer and target computer and the type of target boot kernel created
during the setup process. With the exception of the Version property,
you can set environment properties using the setxpcenv function or the
xPC Target Explorer window, accessed via the xpcexplr function. An
understanding of the environment properties will help you configure
the xPC Target environment.

The function setxpcenv works similarly to the set function of the
MATLAB Handle Graphics® system. Call the function setxpcenv with
an even number of arguments. The first argument of a pair is the
property name; the second argument is the new property value for this
property.

Using the function setxpcenv without arguments returns a list of
allowed property values in the MATLAB window.

28-19

setxpcenv

Tip To access a subset of these properties in xPC Target Explorer:

1 Expand a target computer node in the Targets pane.

2 Click the Target Properties icon in the toolbar or double-click
Properties.

• “Host-to-Target Communication” on page 28-20

• “Target Settings” on page 28-26

• “Boot Configuration” on page 28-30

Host-to-Target Communication

Environment Property Description

HostTargetComm Property values are 'RS232' and
'TcpIp'.

Select RS-232 or TCP/IP from the
Communication type list in the
Target Properties pane of xPC
Target Explorer.

If you select RS-232, you alsomust
set the property RS232HostPort.
If you select TCP/IP, then you
also need to set all properties that
start with TcpIp.

28-20

setxpcenv

Environment Property Description

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate Property values are '115200',
'57600', '38400', '19200',
'9600', '4800’, '2400', and
'1200'.

Select 1200, 2400, 48 00, 9600,
19200, 38400, 57600, or 115200
from the Baud rate list in the
Target Properties pane of xPC
Target Explorer.

RS232HostPort Property values are 'COM1' and
'COM2'.

Select COM1 or COM2 from the
Host port list in the Target
Properties pane of xPC
Target Explorer. The software
automatically determines the
COM port on the target computer.

Before you can select an RS-232
port, you need to set the
HostTargetComm property to
RS232.

28-21

setxpcenv

Environment Property Description

TcpIpGateway Property value is
'xxx.xxx.xxx.xxx'.

Enter the IP address for your
gateway in the Gateway box in
the Target Properties pane
of xPC Target Explorer. This
property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this
property. If your LAN does not
use gateways, you do not need to
change this property. Ask your
system administrator.

TcpIpSubNetMask Property value is
'xxx.xxx.xxx.xxx'.

Enter the subnet mask of your
LAN in the Subnet mask box in
the Target Properties pane of
xPC Target Explorer. Ask your
system administrator for this
value.

For example, your subnet mask
could be 255.255.255.0.

28-22

setxpcenv

Environment Property Description

TcpIpTargetAddress Property value is
'xxx.xxx.xxx.xxx'.

Enter a valid IP address for
your target computer in the
IP address box in the Target
Properties pane of xPC Target
Explorer. Ask your system
administrator for this value.

For example, 192.168.0.10.

TcpIpTargetBusType Property values are 'PCI', 'ISA',
and `USB'.

Select PCI, ISA, or USB from the
Bus type list in the Target
Properties pane of xPC Target
Explorer. This property is set by
default to PCI, and determines
the bus type of your target
computer. You do not need to
define a bus type for your host
computer, which can be the same
or different from the bus type in
your target computer.

If TcpIpTargetBusType is set
to PCI, then the properties
TcpIpISAMemPort and
TcpIpISAIRQ have no effect
on TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values
for TcpIpISAMemPort and
TcpIpISAIRQ.

28-23

setxpcenv

Environment Property Description

TcpIpTargetDriver Property values are '3C90x',
`I8254x', 'I82559', 'NE2000',
'NS83815', 'R8139', 'R8168',
`Rhine', 'RTLANCE',
'SMC91C9X', `USBAX772',
`USBAX172', and `Auto'.

Select THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,
Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto
from the Target driver list in
the Target Properties pane of
xPC Target Explorer.

TcpIpTargetISAIRQ Property value is 'n', where n is
between 5 and 15 inclusive.

Select an IRQ value from the IRQ
list in the Target Properties
pane of xPC Target Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on the ISA-bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings

28-24

setxpcenv

Environment Property Description

leads to a conflict in your target
computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

TcpIpTargetISAMemPort Property value is '0xnnnn'.

Enter an I/O port base address in
the Address box in the Target
Properties pane of xPC Target
Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to around 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/O
port base address and make the
corresponding changes to your
jumper settings.

TcpIpTargetPort Property value is 'xxxxx'.

Enter a port address greater than
20000 in the Port box in the

28-25

setxpcenv

Environment Property Description

Target Properties pane of xPC
Target Explorer.

This property is set by default
to 22222. The default value is
higher than the reserved area
(telnet, ftp, . . .) and is only of
use on the target computer.

Target Settings

Environment Property Description

EthernetIndex Property value is ’n’, where n indicates the index
number for the Ethernet card on a target computer.
Note that the (n-1)th Ethernet card on the target
computer has an index number 'n'. The default index
number is 0.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
booting.

LegacyMultiCoreConfig Property values are 'on' and 'off' (the default).

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

28-26

setxpcenv

Environment Property Description

MaxModelSize Property values are '1MB' (the default), '4MB', and
'16MB'.

Select 1 MB, 4 MB, or 16 MB from theModel size list in
the Target Properties pane of xPC Target Explorer.

Choosing the maximum model size reserves the
specified amount of memory on the target computer for
the target application. The remaining memory is used
by the kernel and by the heap for data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error.

Note

• BootFloppy and DOSLoader modes ignore this value.

• In StandAlone mode, you can only use MaxModelSize
values '1MB' and '4MB'.

MulticoreSupport Property values are 'on' and 'off' (the default).

Select or clear the Multicore CPU check box in the
Target Properties pane of xPC Target Explorer.

If your target computer has multicore processors, set
this value to 'on' to take advantage of these processors
for background tasks. Otherwise, set this value to
'off'.

Name Target computer name.

28-27

setxpcenv

Environment Property Description

NonPentiumSupport Property values are 'on' and 'off' (the default).

Select or clear the Target is a 386/486 check box in
the Target Properties pane of xPC Target Explorer.

Set this value to 'on' if your target computer has a
386 or 486 compatible processor. Otherwise, set it to
'off'. If your target computer has a Pentium or higher
compatible processor, selecting this check box will slow
the performance of your target computer.

SecondaryIDE Property values are 'on' and 'off' (the default).

Select or clear the Secondary IDE check box in the
Target Properties pane of xPC Target Explorer.

Set this value to 'on' only if you want to use the disks
connected to a secondary IDE controller. If you do not
have disks connected to the secondary IDE controller,
leave this value set to 'off'.

ShowHardware Property values are `on' and `off' (the default).

If you create a target boot kernel when ShowHardware
is `on' and boot the target computer with it, the kernel
displays on the target monitor the index, bus, slot,
function, and target driver for each Ethernet card.

Note The host computer cannot communicate with
the target computer after the kernel boots with
ShowHardware set.

28-28

setxpcenv

Environment Property Description

TargetRAMSizeMB Property values are 'Auto' (the default) and 'Manual'.

Under RAM size, click the Auto orManual button in
the Target Properties pane of xPC Target Explorer.
If you click Manual, enter the amount of RAM, in
megabytes, installed on the target computer in the
Size(MB) box.

TargetRAMSizeMB defines the total amount of installed
RAM in the target computer. This RAM is used for
the kernel, target application, data logging, and other
functions that use the heap.

If TargetRAMSizeMB is set to Auto, the target
application automatically determines the amount of
memory up to 64 MB. If the target computer does not
contain more than 64 MB of RAM or you do not want
to use more than 64 MB, select Auto. If the target
computer has more than 64 MB of RAM and you want
to use more than 64 MB, select Manual and enter the
amount of RAM installed in the target computer.

Note The xPC Target kernel can use only 2 GB of
memory.

28-29

setxpcenv

Environment Property Description

TargetScope Property values are 'Disabled' and 'Enabled' (the
default).

Select or clear the Graphics mode check box in the
Target Properties pane of xPC Target Explorer.

If you set TargetScope to Disabled, the target
computer displays information as text.

Tip To use all the features of the target scope, you also
need to install a keyboard on the target computer.

USBSupport Property values are 'on' (the default) and 'off'.

Select or clear the USB Support check box in the
Target Properties pane of xPC Target Explorer.

Set this value to 'on' if you want to use a USB port on
the target computer; for example, to connect a USB
mouse. Otherwise, set it to 'off'.

Boot Configuration

Environment Property Description

BootFloppyLocation Drive name for creation of target
boot disk.

CDBootImageLocation Location of cdboot.iso file for
creation of CD target boot disk.

DOSLoaderLocation Location of DOSLoader files
to boot target computers from
devices other than floppy disk or
CD.

28-30

setxpcenv

Environment Property Description

EmbeddedOption Property values are 'Disabled'
and 'Enabled'. This property is
read only.

Note that the xPC Target
Embedded Option product is
enabled only if you purchase an
additional license.

TargetBoot Property values are
'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot',
and 'StandAlone'.

Select Removable Disk, CD, DOS
Loader, Network, or Stand Alone
from the Boot mode list in the
Target Properties pane of xPC
Target Explorer.

If your license file does not include
the license for the xPC Target
Embedded Option product, your
only options are Removable Disk,
CD, DOS Loader, and Network.
With the xPC Target Embedded
Option product licensed and
installed, you have the additional
choice of Stand Alone.

Tip Click the Create boot disk
button to create a bootable image
in the specified boot mode.

TargetMACAddress Physical target computer MAC
address from which to accept boot

28-31

setxpcenv

Environment Property Description

requests when booting within
a dedicated network. Format
the MAC address as six pairs of
hexadecimal numbers, separated
by colons:

xx:xx:xx:xx:xx:xx

To update the MAC address
in xPC Target Explorer, first
click the Reset button in the
Target Properties pane. You
can then click the Specify new
MAC address button to enter
a MAC address manually in the
MAC address box. If you do not
enter a MAC address manually,
the software will obtain the
MAC address automatically the
next time you restart the target
computer.

Examples List the current environment properties.

setxpcenv

Change the serial communication port of the host computer to COM2.

setxpcenv('RS232HostPort','COM2')

See Also getxpcenv | xpcbootdisk

How To • “Network Communication Setup”

• “Serial Communication Setup”

28-32

setxpcenv

• “Target Boot Methods”

• “Command Line Setup for Single Target Computer Systems” on
page 4-9

• “Command Line Setup for Multiple Target Computer Systems” on
page 4-43

28-33

xpcbench

Purpose xPC Target benchmark

Syntax MATLAB command line

xpcbench(model)
xpcbench(model,P1)
xpcbench(model,P1,P2)
xpcbench(model,P1,P2,P3)

Arguments
Argument Value Description

'minimal' Benchmark the
default minimal
model.

'f14' Benchmark the
default f14 model
(one f14 system).

'f14*5' Benchmark the
default f14*5 model
(five copies of the f14
system).

'f14*10' Benchmark the
default f14*10 model
(ten copies of the f14
system).

'f14*25' Benchmark the
default f14*25 model
(25 copies of the f14
system).

'this' Benchmark all five
default models (the
default minimal
model plus all four
default f14 models).

model

28-34

xpcbench

Argument Value Description

'usermdl' Benchmark your
model, usermdl.

'-reboot' Reboot the target
computer after
testing each model.

'-cleanup' Delete build files after
running benchmarks.

Up to three optional
arguments: P1, P2,
and P3

'-verbose' Plot and display
results in the
MATLAB Command
Window.

Description xpcbench benchmarks the real-time execution performance of xPC
Target applications on your target computer and compares the result
with prestored benchmark results from other computers.

The prestored target computer benchmark results of
five models (applications) are provided, each model compiled
using a sampling of the currently supported compilers (see
http://www.mathworks.com/support/compilers/current_release/).
Compare these results with those for your target computer. Results are
labeled by CPU type, CPU clock rate, and the compiler used to
compile the application.

The five benchmark models are:

28-35

http://www.mathworks.com/support/compilers/current_release/

xpcbench

Benchmark Description

minimal Based on a minimal model
consisting of just three blocks
(Constant, Gain, Termination).
This model has neither
continuous nor discrete states.
The result of this benchmark
gives an impression about
the target computer interrupt
latencies.

f14 Based on the standard Simulink
example model f14. Type f14 in
the MATLAB Command Window
to open the model and view the
model (62 blocks, 10 continuous
states).

f14*5 Five f14 systems modeled
in subsystems (310 blocks,
50 continuous states). This
benchmark is five times more
demanding than benchmark F14.

f14*10 Ten f14 systems (620 blocks, 100
continuous states).

f14*25 25 f14 systems (1550 blocks, 250
continuous states).

xpcbench without an argument displays two plot figures, each
containing different representations of the prestored target computer
benchmark results. The first plot lists, for each target computer
tested, the smallest achievable sample time for the five benchmarks, in
microseconds. The second plot contains a bar graph of all computers,
ranked by relative performance.

28-36

xpcbench

Note

• The prestored benchmark results were collected with Multicore
CPU support disabled. This allows for direct comparison with
previous release results.

• A sample time is achievable if any smaller sample time causes CPU
overload.

xpcbench(model) benchmarks your target computer using argument
model. You can specify:

• All five default benchmarks ('this')

• One of the five default benchmarks ('minimal', 'f14', 'f14*5',
'f14*10', 'f14*25')

• Your model ('usermdl')

Before you run xpcbench, you must connect the host machine to the
target computer and run the xPC Target test, xpctest, with no failures.

Benchmark execution can take several minutes to complete, including:

1 Generating the benchmark models

2 Building and downloading the xPC Target applications

3 Searching for the smallest achievable sample time

4 Displaying the performance results in the MATLAB Command
Window, along with the prestored results for the other target
computers

res = xpcbench returns the prestored benchmark results in a structure
array with fields:

28-37

xpcbench

Field Name Contents

Machine Target computer information
string containing CPU type, CPU
speed, compiler

BenchResults Target computer benchmark
performance for the five default
models ’minimal’, ’f14’, ’f14*5’,
’f14*10’, ’f14*25’

Desc Target computer descriptor string
containing machine type, RAM
size, cache size

res = xpcbench(model) returns the benchmark results for model in a
structure with fields:

Field Name Contents

Name Name of model

nBlocks Number of blocks in model

BuildTime Elapsed time in seconds to build
model

BenchTime Elapsed time in seconds to run
benchmark for model

Tsmin Minimal achievable sample time
in seconds for model

Examples xpcbench

Prestored benchmark results showing what to expect of representative
processors.

Boot the target computer using your chosen method.

Connect it to the host computer.

28-38

xpcbench

xpctest

res = xpcbench;
res(1)

ans =

Machine: 'Intel Celeron M 600MHz (VisualC10.0)'
BenchResults: [1.0000e-05 1.4000e-05 2.5000e-05

4.4000e-05 1.0800e-04]
Desc: [1x70 char]

The array contains benchmark results for each processor type, in
arbitrary order.

xpcbench

28-39

xpcbench

28-40

xpcbench

xpcbench(’this’)

Benchmark using the five default models.

Boot the target computer using your chosen method.

Connect it to the host computer.

xpctest

res = xpcbench('this');
res(1)

ans =

28-41

xpcbench

Name: 'Minimal'
nBlocks: 3

BuildTime: 13.0557
BenchTime: 23.3724

Tsmin: 1.8656e-05

xpcbench('this')

28-42

xpcbench

xpcbench(’f14*5’)

Benchmark using model f14*5 only.

Boot the target computer using your chosen method.

Connect it to the host computer.

xpctest

res = xpcbench('f14*5')
res

res =

28-43

xpcbench

Name: 'F14*5'
nBlocks: 310

BuildTime: 19.4939
BenchTime: 29.7564

Tsmin: 2.4453e-05

xpcbench('f14*5')

Benchmark results for model: F14*5
Number of blocks in model: 310
Elapsed time for model build (sec): 12.2
Elapsed time for model benchmark (sec): 29.8
Minimal achievable sample time (microsec): 26.3

xpcbench(’this’,’-reboot’)

Benchmark the target computer using the five default models, rebooting
after each test.

Boot the target computer using your chosen method.

Connect it to the host computer.

xpctest

xpcbench('this','-reboot')

28-44

xpcbench

28-45

xpcbench

xpcbench(’xpcosc’,’-cleanup’,’-verbose’);

Benchmark the target computer using model xpcosc, delete the build
files when done, and display full results in the MATLAB Command
Window.

Boot the target computer using your chosen method.

Connect it to the host computer.

xpctest

xpcbench('xpcosc','-cleanup','-verbose');

28-46

xpcbench

Benchmark results for model: xpcosc
Number of blocks in model: 10
Elapsed time for model build (sec): 37.2
Elapsed time for model benchmark (sec): 23.4
Minimal achievable sample time (microsec): 24.0

res = xpcbench(’this’,’-reboot’,’-cleanup’,’-verbose’);

Benchmark the target computer using the five default models, reboot
after each test, store the results in res, delete the build files when done,
and display full results in the MATLAB Command Window.

Boot the target computer using your chosen method.

Connect it to the host computer.

xpctest

res = xpcbench('this','-reboot','-cleanup','-verbose');

28-47

xpcbench

28-48

xpcbench

res(1)

ans =

Name: 'Minimal'
nBlocks: 3

BuildTime: 11.0002
BenchTime: 23.4068

Tsmin: 1.9141e-05

See Also xpctest

28-49

xpcbootdisk

Purpose Create xPC Target boot disk or DOS Loader files and confirm current
environment properties

Syntax MATLAB command line

xpcbootdisk

Description Function to create an xPC Target boot floppy, CD or DVD boot
image, network boot image, or DOS Loader files for the current xPC
Target environment. Use the setxpcenv function to set environment
properties.

• Creating an xPC Target boot floppy consists of writing the bootable
kernel image onto the disk. You are asked to insert an empty
formatted floppy disk into the drive. At the end, a summary of the
creation process is displayed.

• Creating an xPC Target CD/DVD boot image consists of creating the
bootable kernel image in a designated area. You can then burn the
files to a blank CD/DVD. If you have Microsoft Windows Vista or
Microsoft Windows XP Service Pack 2 or 3 with Image Mastering API
v2.0 (IMAPIv2.0), xpcbootdisk offers to create to the CD or DVD.
Otherwise, you must use alternate third-party CD/DVD writing
software to write ISO image files.

• Creating an xPC Target network boot image consists of running
xpcnetboot to start the network boot server process.

• Creating xPC Target DOS Loader files consists of creating the files in
a designated area. You can then copy the files to the target computer
flash disk.

If you update the environment, you need to update the target boot
floppy, CD boot image, network boot image, or DOS Loader files for the
new xPC Target environment with the function xpcbootdisk.

Examples To create a boot floppy disk, in the MATLAB window, type:

xpcbootdisk

28-50

xpcbootdisk

See Also setxpcenv | getxpcenv

How To • “Target Boot Methods”

• “Command Line Target Boot Methods” on page 4-36

• “Command Line Target Boot Methods: Multiple Target Computers”
on page 4-70

28-51

xpcbytes2file

Purpose Generate file suitable for use by From File block

Syntax xpcbytes2file(filename, var1, . . .,varn)

Arguments
filename Name of the data file from which the From File

block distributes data.

var1,. .
.varn

Column of data to be output to the model.

Description The xpcbytes2file function outputs one column of var1,. . .,
varn at every time step. All variables must have the same number of
columns; the number of rows and data types can differ.

Note You might have the data organized such that a row refers to a
single time step and not a column. In this case, pass to xpcbytes2file
the transpose of the variable. To optimize file writes, organize the data
in columns.

Examples In the following example, to use the From File block to output a variable
errorval (single precision, scalar) and velocity (double, width 3) at
every time step, you can generate the file with the command:

xpcbytes2file('myfile', errorval, velocity)

where errorval has class 'single' and dimensions [1 x N] and
velocity has class 'double' and dimensions [3 x N].

Set up the From File block to output

28 bytes
(1 * sizeof('single') + 3 * sizeof('double'))

at every sample time.

28-52

xpcexplr

Purpose Open xPC Target Explorer

Syntax MATLAB command line

xpcexplr

Description This tool runs on the host computer and allows you to:

• Enter and change xPC Target environment properties

• Create an xPC Target bootable image

• Download, unload, and run target applications

• Monitor signals

• Tune parameters

• Add, remove, and configure xPC Target scopes

• Browse the target file system

See Also setxpcenv | getxpcenv | xpcbootdisk

How To • “Network Communication Setup”

• “Serial Communication Setup”

• “Target Boot Methods”

28-53

xpcgetCC

Purpose Compiler settings for xPC Target environment

Syntax type = xpcgetCC
type = xpcgetCC('Type')
[type, location] = xpcgetCC
location= xpcgetCC('Location')
xpcgetCC('supported')
xpcgetCC('installed')
[compilers] = xpcgetCC('installed')

Description type = xpcgetCC and type = xpcgetCC('Type') return the compiler
type in type.

[type, location] = xpcgetCC returns the compiler type and its
location in type and location.

location= xpcgetCC('Location') returns the compiler location in
location.

xpcgetCC('supported') lists supported compiler versions for the xPC
Target environment.

xpcgetCC('installed') lists the xPC Target supported compilers
installed on the current host computer

[compilers] = xpcgetCC('installed') returns the xPC Target
supported compilers installed on the current host computer in a
structure.

Examples Return the compiler type.

type = xpcgetCC

Return the compiler type and compiler location.

>> [type, location] = xpcgetCC

Return the xPC Target supported compilers installed on the current
host computer in a structure and access the structure fields

28-54

xpcgetCC

[compilers] = xpcgetCC('installed')

compilers =

1x3 struct array with fields:
Type
Name
Location

compilers.Type

ans =

VisualC

See Also xpcsetCC

28-55

xpcnetboot

Purpose Create kernel to boot target computer over dedicated network

Syntax MATLAB command line

xpcnetboot
xpcnetboot targetPCname

Arguments targetPCName Target computer name as identified in xPC Target
Explorer.

Description The xpcnetboot function creates an xPC Target kernel that a target
computer within the same network can boot.

This function also starts the following services as server processes:

• Bootstrap protocol (bootp) — xpcbootpserver.exe

• Trivial file transfer protocol (tftp) — xpctftpserver.exe

These processes respond to network boot requests from the target
computer.

xpcnetboot creates an xPC Target kernel for the default target
computer (as identified in xPC Target Explorer).

xpcnetboot targetPCname creates an xPC Target kernel and waits for
a request from the target computer named targetPCname (as identified
in xPC Target Explorer).

Examples In the following example, xpcnetboot creates an xPC Target kernel and
waits for a request from the target computer, TargetPC1.

xpcnetboot TargetPC1

28-56

xpcsetCC

Purpose Compiler settings for xPC Target environment

Syntax xpcsetCC('setup')
xpcsetCC('location')
xpcsetCC('type')
xpcsetCC(type, location)

Description xpcsetCC('setup') queries the host computer for installed C compilers
that the xPC Target environment supports. You can then select the
C compiler.

xpcsetCC('location') sets the compiler location.

xpcsetCC('type') sets the compiler type. 'type' must be VISUALC,
representing the

Microsoft Visual Studio C compiler.

xpcsetCC(type, location) sets the compiler type and location.

See Also xpcgetCC

How To • “Command Line C Compiler Configuration” on page 4-10

28-57

xpctarget Package

Purpose Package for all xPC Target MATLAB classes

Description Use xpctarget package objects to access all of the MATLAB command
line capabilities.

Functions

Assign these object creation functions to a MATLAB variable to get
access to the properties and methods of the class.

Function Description

xpctarget.fs Create file system object

xpctarget.ftp Create file transfer protocol (FTP) object

xpctarget.targets Create container object to manage target computer
environment collection objects

xpctarget.xpc Create target object representing target application

28-58

xpctarget.env Class

Purpose Stores target environment properties

Description Each xpctarget.env Class object contains the environment properties
for a particular target computer. A collection of these objects is
stored in an xpctarget.targets Class object. An individual object
in a collection is accessed via the xpctarget.targets.Item (env
collection object) method.

Methods

Method Description

xpctarget.env.get
(env object)

Return property values for an environment object

xpctarget.env.set
(env object)

Change property values for an environment object

28-59

xpctarget.env Class

Properties

The environment properties define communication between the host
computer and target computer and the type of target boot floppy
created during the setup process. An understanding of the environment
properties will help you configure the xPC Target environment.

Tip To access a subset of these properties in xPC Target Explorer:

1 Expand a target computer node in the Targets pane.

2 Click the Target Properties icon in the toolbar or double-click
Properties.

• Host-to-Target Communication on page 60

• Target Settings on page 66

• Boot Configuration on page 70

Host-to-Target Communication
Environment Property Description

HostTargetComm Property values are 'RS232' and
'TcpIp'.

Select RS-232 or TCP/IP from the
Communication type list in the
Target Properties pane of xPC
Target Explorer.

If you select RS-232, you alsomust
set the property RS232HostPort.
If you select TCP/IP, then you
also need to set all properties that
start with TcpIp.

28-60

xpctarget.env Class

Environment Property Description

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate Property values are '115200',
'57600', '38400', '19200',
'9600', '4800’, '2400', and
'1200'.

Select 1200, 2400, 48 00, 9600,
19200, 38400, 57600, or 115200
from the Baud rate list in the
Target Properties pane of xPC
Target Explorer.

RS232HostPort Property values are 'COM1' and
'COM2'.

Select COM1 or COM2 from the
Host port list in the Target
Properties pane of xPC
Target Explorer. The software
automatically determines the
COM port on the target computer.

Before you can select an RS-232
port, you need to set the
HostTargetComm property to
RS232.

28-61

xpctarget.env Class

Environment Property Description

TcpIpGateway Property value is
'xxx.xxx.xxx.xxx'.

Enter the IP address for your
gateway in the Gateway box in
the Target Properties pane
of xPC Target Explorer. This
property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this
property. If your LAN does not
use gateways, you do not need to
change this property. Ask your
system administrator.

TcpIpSubNetMask Property value is
'xxx.xxx.xxx.xxx'.

Enter the subnet mask of your
LAN in the Subnet mask box in
the Target Properties pane of
xPC Target Explorer. Ask your
system administrator for this
value.

For example, your subnet mask
could be 255.255.255.0.

28-62

xpctarget.env Class

Environment Property Description

TcpIpTargetAddress Property value is
'xxx.xxx.xxx.xxx'.

Enter a valid IP address for
your target computer in the
IP address box in the Target
Properties pane of xPC Target
Explorer. Ask your system
administrator for this value.

For example, 192.168.0.10.

TcpIpTargetBusType Property values are 'PCI', 'ISA',
and `USB'.

Select PCI, ISA, or USB from the
Bus type list in the Target
Properties pane of xPC Target
Explorer. This property is set by
default to PCI, and determines
the bus type of your target
computer. You do not need to
define a bus type for your host
computer, which can be the same
or different from the bus type in
your target computer.

If TcpIpTargetBusType is set
to PCI, then the properties
TcpIpISAMemPort and
TcpIpISAIRQ have no effect
on TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values
for TcpIpISAMemPort and
TcpIpISAIRQ.

28-63

xpctarget.env Class

Environment Property Description

TcpIpTargetDriver Property values are '3C90x',
`I8254x', 'I82559', 'NE2000',
'NS83815', 'R8139', 'R8168',
`Rhine', 'RTLANCE',
'SMC91C9X', `USBAX772',
`USBAX172', and `Auto'.

Select THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,
Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto
from the Target driver list in
the Target Properties pane of
xPC Target Explorer.

TcpIpTargetISAIRQ Property value is 'n', where n is
between 5 and 15 inclusive.

Select an IRQ value from the IRQ
list in the Target Properties
pane of xPC Target Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on the ISA-bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings

28-64

xpctarget.env Class

Environment Property Description

leads to a conflict in your target
computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

TcpIpTargetISAMemPort Property value is '0xnnnn'.

Enter an I/O port base address in
the Address box in the Target
Properties pane of xPC Target
Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to around 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/O
port base address and make the
corresponding changes to your
jumper settings.

TcpIpTargetPort Property value is 'xxxxx'.

Enter a port address greater than
20000 in the Port box in the

28-65

xpctarget.env Class

Environment Property Description

Target Properties pane of xPC
Target Explorer.

This property is set by default
to 22222. The default value is
higher than the reserved area
(telnet, ftp, . . .) and is only of
use on the target computer.

Target Settings
Environment Property Description

EthernetIndex Property value is ’n’, where n indicates the index
number for the Ethernet card on a target computer.
Note that the (n-1)th Ethernet card on the target
computer has an index number 'n'. The default index
number is 0.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
booting.

LegacyMultiCoreConfig Property values are 'on' and 'off' (the default).

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

28-66

xpctarget.env Class

Environment Property Description

MaxModelSize Property values are '1MB' (the default), '4MB', and
'16MB'.

Select 1 MB, 4 MB, or 16 MB from theModel size list in
the Target Properties pane of xPC Target Explorer.

Choosing the maximum model size reserves the
specified amount of memory on the target computer for
the target application. The remaining memory is used
by the kernel and by the heap for data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error.

Note

• BootFloppy and DOSLoader modes ignore this value.

• In StandAlone mode, you can only use MaxModelSize
values '1MB' and '4MB'.

MulticoreSupport Property values are 'on' and 'off' (the default).

Select or clear the Multicore CPU check box in the
Target Properties pane of xPC Target Explorer.

If your target computer has multicore processors, set
this value to 'on' to take advantage of these processors
for background tasks. Otherwise, set this value to
'off'.

Name Target computer name.

28-67

xpctarget.env Class

Environment Property Description

NonPentiumSupport Property values are 'on' and 'off' (the default).

Select or clear the Target is a 386/486 check box in
the Target Properties pane of xPC Target Explorer.

Set this value to 'on' if your target computer has a
386 or 486 compatible processor. Otherwise, set it to
'off'. If your target computer has a Pentium or higher
compatible processor, selecting this check box will slow
the performance of your target computer.

SecondaryIDE Property values are 'on' and 'off' (the default).

Select or clear the Secondary IDE check box in the
Target Properties pane of xPC Target Explorer.

Set this value to 'on' only if you want to use the disks
connected to a secondary IDE controller. If you do not
have disks connected to the secondary IDE controller,
leave this value set to 'off'.

ShowHardware Property values are `on' and `off' (the default).

If you create a target boot kernel when ShowHardware
is `on' and boot the target computer with it, the kernel
displays on the target monitor the index, bus, slot,
function, and target driver for each Ethernet card.

Note The host computer cannot communicate with
the target computer after the kernel boots with
ShowHardware set.

28-68

xpctarget.env Class

Environment Property Description

TargetRAMSizeMB Property values are 'Auto' (the default) and 'Manual'.

Under RAM size, click the Auto orManual button in
the Target Properties pane of xPC Target Explorer.
If you click Manual, enter the amount of RAM, in
megabytes, installed on the target computer in the
Size(MB) box.

TargetRAMSizeMB defines the total amount of installed
RAM in the target computer. This RAM is used for
the kernel, target application, data logging, and other
functions that use the heap.

If TargetRAMSizeMB is set to Auto, the target
application automatically determines the amount of
memory up to 64 MB. If the target computer does not
contain more than 64 MB of RAM or you do not want
to use more than 64 MB, select Auto. If the target
computer has more than 64 MB of RAM and you want
to use more than 64 MB, select Manual and enter the
amount of RAM installed in the target computer.

Note The xPC Target kernel can use only 2 GB of
memory.

28-69

xpctarget.env Class

Environment Property Description

TargetScope Property values are 'Disabled' and 'Enabled' (the
default).

Select or clear the Graphics mode check box in the
Target Properties pane of xPC Target Explorer.

If you set TargetScope to Disabled, the target
computer displays information as text.

Tip To use all the features of the target scope, you also
need to install a keyboard on the target computer.

USBSupport Property values are 'on' (the default) and 'off'.

Select or clear the USB Support check box in the
Target Properties pane of xPC Target Explorer.

Set this value to 'on' if you want to use a USB port on
the target computer; for example, to connect a USB
mouse. Otherwise, set it to 'off'.

Boot Configuration
Environment Property Description

BootFloppyLocation Drive name for creation of target
boot disk.

CDBootImageLocation Location of cdboot.iso file for
creation of CD target boot disk.

DOSLoaderLocation Location of DOSLoader files
to boot target computers from
devices other than floppy disk or
CD.

28-70

xpctarget.env Class

Environment Property Description

EmbeddedOption Property values are 'Disabled'
and 'Enabled'. This property is
read only.

Note that the xPC Target
Embedded Option product is
enabled only if you purchase an
additional license.

TargetBoot Property values are
'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot',
and 'StandAlone'.

Select Removable Disk, CD, DOS
Loader, Network, or Stand Alone
from the Boot mode list in the
Target Properties pane of xPC
Target Explorer.

If your license file does not include
the license for the xPC Target
Embedded Option product, your
only options are Removable Disk,
CD, DOS Loader, and Network.
With the xPC Target Embedded
Option product licensed and
installed, you have the additional
choice of Stand Alone.

Tip Click the Create boot disk
button to create a bootable image
in the specified boot mode.

TargetMACAddress Physical target computer MAC
address from which to accept boot

28-71

xpctarget.env Class

Environment Property Description

requests when booting within
a dedicated network. Format
the MAC address as six pairs of
hexadecimal numbers, separated
by colons:

xx:xx:xx:xx:xx:xx

To update the MAC address
in xPC Target Explorer, first
click the Reset button in the
Target Properties pane. You
can then click the Specify new
MAC address button to enter
a MAC address manually in the
MAC address box. If you do not
enter a MAC address manually,
the software will obtain the
MAC address automatically the
next time you restart the target
computer.

28-72

xpctarget.env.get (env object)

Purpose Return target environment property values

Syntax MATLAB command line

get(env_object)

get(env_object, 'property_name1', 'property_value1',

'property_name2', 'property_value2', . . .)

env_object.get('property_name1', 'property_value1')

get(env_object, property_name_vector, property_value_vector)

env_object.property_name = property_value

Arguments env_object Name of a target environment object.

'property_name' Name of a target environment object property.
Always use quotation marks.

property_value Value for a target environment object property.
Always use quotation marks for character
strings; quotation marks are optional for
numbers.

parameter_name The letter p followed by the parameter index.
For example, p0, p1, p2.

Description Not all properties are user writable. Get an individual environment
object via the xpctarget.targets.Item (env collection object)
method.

The environment properties for a target environment object are listed
in the following table. This table includes a description of the properties
and which properties you can change directly by assigning a value.

28-73

xpctarget.env.get (env object)

Tip To access a subset of these properties in xPC Target Explorer:

1 Expand a target computer node in the Targets pane.

2 Click the Target Properties icon in the toolbar or double-click
Properties.

• “Host-to-Target Communication” on page 28-74

• “Target Settings” on page 28-80

• “Boot Configuration” on page 28-84

Host-to-Target Communication

Environment Property Description

HostTargetComm Property values are 'RS232' and
'TcpIp'.

Select RS-232 or TCP/IP from the
Communication type list in the
Target Properties pane of xPC
Target Explorer.

If you select RS-232, you alsomust
set the property RS232HostPort.
If you select TCP/IP, then you
also need to set all properties that
start with TcpIp.

28-74

xpctarget.env.get (env object)

Environment Property Description

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate Property values are '115200',
'57600', '38400', '19200',
'9600', '4800’, '2400', and
'1200'.

Select 1200, 2400, 48 00, 9600,
19200, 38400, 57600, or 115200
from the Baud rate list in the
Target Properties pane of xPC
Target Explorer.

RS232HostPort Property values are 'COM1' and
'COM2'.

Select COM1 or COM2 from the
Host port list in the Target
Properties pane of xPC
Target Explorer. The software
automatically determines the
COM port on the target computer.

Before you can select an RS-232
port, you need to set the
HostTargetComm property to
RS232.

28-75

xpctarget.env.get (env object)

Environment Property Description

TcpIpGateway Property value is
'xxx.xxx.xxx.xxx'.

Enter the IP address for your
gateway in the Gateway box in
the Target Properties pane
of xPC Target Explorer. This
property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this
property. If your LAN does not
use gateways, you do not need to
change this property. Ask your
system administrator.

TcpIpSubNetMask Property value is
'xxx.xxx.xxx.xxx'.

Enter the subnet mask of your
LAN in the Subnet mask box in
the Target Properties pane of
xPC Target Explorer. Ask your
system administrator for this
value.

For example, your subnet mask
could be 255.255.255.0.

28-76

xpctarget.env.get (env object)

Environment Property Description

TcpIpTargetAddress Property value is
'xxx.xxx.xxx.xxx'.

Enter a valid IP address for
your target computer in the
IP address box in the Target
Properties pane of xPC Target
Explorer. Ask your system
administrator for this value.

For example, 192.168.0.10.

TcpIpTargetBusType Property values are 'PCI', 'ISA',
and `USB'.

Select PCI, ISA, or USB from the
Bus type list in the Target
Properties pane of xPC Target
Explorer. This property is set by
default to PCI, and determines
the bus type of your target
computer. You do not need to
define a bus type for your host
computer, which can be the same
or different from the bus type in
your target computer.

If TcpIpTargetBusType is set
to PCI, then the properties
TcpIpISAMemPort and
TcpIpISAIRQ have no effect
on TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values
for TcpIpISAMemPort and
TcpIpISAIRQ.

28-77

xpctarget.env.get (env object)

Environment Property Description

TcpIpTargetDriver Property values are '3C90x',
`I8254x', 'I82559', 'NE2000',
'NS83815', 'R8139', 'R8168',
`Rhine', 'RTLANCE',
'SMC91C9X', `USBAX772',
`USBAX172', and `Auto'.

Select THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,
Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto
from the Target driver list in
the Target Properties pane of
xPC Target Explorer.

TcpIpTargetISAIRQ Property value is 'n', where n is
between 5 and 15 inclusive.

Select an IRQ value from the IRQ
list in the Target Properties
pane of xPC Target Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on the ISA-bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings

28-78

xpctarget.env.get (env object)

Environment Property Description

leads to a conflict in your target
computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

TcpIpTargetISAMemPort Property value is '0xnnnn'.

Enter an I/O port base address in
the Address box in the Target
Properties pane of xPC Target
Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to around 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/O
port base address and make the
corresponding changes to your
jumper settings.

TcpIpTargetPort Property value is 'xxxxx'.

Enter a port address greater than
20000 in the Port box in the

28-79

xpctarget.env.get (env object)

Environment Property Description

Target Properties pane of xPC
Target Explorer.

This property is set by default
to 22222. The default value is
higher than the reserved area
(telnet, ftp, . . .) and is only of
use on the target computer.

Target Settings

Environment Property Description

EthernetIndex Property value is ’n’, where n indicates the index
number for the Ethernet card on a target computer.
Note that the (n-1)th Ethernet card on the target
computer has an index number 'n'. The default index
number is 0.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
booting.

LegacyMultiCoreConfig Property values are 'on' and 'off' (the default).

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

28-80

xpctarget.env.get (env object)

Environment Property Description

MaxModelSize Property values are '1MB' (the default), '4MB', and
'16MB'.

Select 1 MB, 4 MB, or 16 MB from theModel size list in
the Target Properties pane of xPC Target Explorer.

Choosing the maximum model size reserves the
specified amount of memory on the target computer for
the target application. The remaining memory is used
by the kernel and by the heap for data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error.

Note

• BootFloppy and DOSLoader modes ignore this value.

• In StandAlone mode, you can only use MaxModelSize
values '1MB' and '4MB'.

MulticoreSupport Property values are 'on' and 'off' (the default).

Select or clear the Multicore CPU check box in the
Target Properties pane of xPC Target Explorer.

If your target computer has multicore processors, set
this value to 'on' to take advantage of these processors
for background tasks. Otherwise, set this value to
'off'.

Name Target computer name.

28-81

xpctarget.env.get (env object)

Environment Property Description

NonPentiumSupport Property values are 'on' and 'off' (the default).

Select or clear the Target is a 386/486 check box in
the Target Properties pane of xPC Target Explorer.

Set this value to 'on' if your target computer has a
386 or 486 compatible processor. Otherwise, set it to
'off'. If your target computer has a Pentium or higher
compatible processor, selecting this check box will slow
the performance of your target computer.

SecondaryIDE Property values are 'on' and 'off' (the default).

Select or clear the Secondary IDE check box in the
Target Properties pane of xPC Target Explorer.

Set this value to 'on' only if you want to use the disks
connected to a secondary IDE controller. If you do not
have disks connected to the secondary IDE controller,
leave this value set to 'off'.

ShowHardware Property values are `on' and `off' (the default).

If you create a target boot kernel when ShowHardware
is `on' and boot the target computer with it, the kernel
displays on the target monitor the index, bus, slot,
function, and target driver for each Ethernet card.

Note The host computer cannot communicate with
the target computer after the kernel boots with
ShowHardware set.

28-82

xpctarget.env.get (env object)

Environment Property Description

TargetRAMSizeMB Property values are 'Auto' (the default) and 'Manual'.

Under RAM size, click the Auto orManual button in
the Target Properties pane of xPC Target Explorer.
If you click Manual, enter the amount of RAM, in
megabytes, installed on the target computer in the
Size(MB) box.

TargetRAMSizeMB defines the total amount of installed
RAM in the target computer. This RAM is used for
the kernel, target application, data logging, and other
functions that use the heap.

If TargetRAMSizeMB is set to Auto, the target
application automatically determines the amount of
memory up to 64 MB. If the target computer does not
contain more than 64 MB of RAM or you do not want
to use more than 64 MB, select Auto. If the target
computer has more than 64 MB of RAM and you want
to use more than 64 MB, select Manual and enter the
amount of RAM installed in the target computer.

Note The xPC Target kernel can use only 2 GB of
memory.

28-83

xpctarget.env.get (env object)

Environment Property Description

TargetScope Property values are 'Disabled' and 'Enabled' (the
default).

Select or clear the Graphics mode check box in the
Target Properties pane of xPC Target Explorer.

If you set TargetScope to Disabled, the target
computer displays information as text.

Tip To use all the features of the target scope, you also
need to install a keyboard on the target computer.

USBSupport Property values are 'on' (the default) and 'off'.

Select or clear the USB Support check box in the
Target Properties pane of xPC Target Explorer.

Set this value to 'on' if you want to use a USB port on
the target computer; for example, to connect a USB
mouse. Otherwise, set it to 'off'.

Boot Configuration

Environment Property Description

BootFloppyLocation Drive name for creation of target
boot disk.

CDBootImageLocation Location of cdboot.iso file for
creation of CD target boot disk.

DOSLoaderLocation Location of DOSLoader files
to boot target computers from
devices other than floppy disk or
CD.

28-84

xpctarget.env.get (env object)

Environment Property Description

EmbeddedOption Property values are 'Disabled'
and 'Enabled'. This property is
read only.

Note that the xPC Target
Embedded Option product is
enabled only if you purchase an
additional license.

TargetBoot Property values are
'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot',
and 'StandAlone'.

Select Removable Disk, CD, DOS
Loader, Network, or Stand Alone
from the Boot mode list in the
Target Properties pane of xPC
Target Explorer.

If your license file does not include
the license for the xPC Target
Embedded Option product, your
only options are Removable Disk,
CD, DOS Loader, and Network.
With the xPC Target Embedded
Option product licensed and
installed, you have the additional
choice of Stand Alone.

Tip Click the Create boot disk
button to create a bootable image
in the specified boot mode.

TargetMACAddress Physical target computer MAC
address from which to accept boot

28-85

xpctarget.env.get (env object)

Environment Property Description

requests when booting within
a dedicated network. Format
the MAC address as six pairs of
hexadecimal numbers, separated
by colons:

xx:xx:xx:xx:xx:xx

To update the MAC address
in xPC Target Explorer, first
click the Reset button in the
Target Properties pane. You
can then click the Specify new
MAC address button to enter
a MAC address manually in the
MAC address box. If you do not
enter a MAC address manually,
the software will obtain the
MAC address automatically the
next time you restart the target
computer.

See Also xpctarget.env.set (env object)

28-86

xpctarget.env.set (env object)

Purpose Change target environment object property values

Syntax MATLAB command line

set(env_object)
set(env_object, 'property_name1', 'property_value1',
'property_name2', 'property_value2', . . .)
env_object.set('property_name1', 'property_value1')
set(env_object, property_name_vector,
property_value_vector)
env_object.property_name = property_value

Arguments env_object Name of a target environment object.

'property_name' Name of a target environment object property.
Always use quotation marks.

property_value Value for a target environment object property.
Always use quotation marks for character
strings; quotation marks are optional for
numbers.

Description Not all properties are user writable. Get an individual environment
object via the xpctarget.targets.Item (env collection object)
method.

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector. The writable properties for a target
environment object are listed in the following table. This table includes
a description of the properties.

28-87

xpctarget.env.set (env object)

Tip To access a subset of these properties in xPC Target Explorer:

1 Expand a target computer node in the Targets pane.

2 Click the Target Properties icon in the toolbar or double-click
Properties.

• “Host-to-Target Communication” on page 28-88

• “Target Settings” on page 28-94

• “Boot Configuration” on page 28-98

Host-to-Target Communication

Environment Property Description

HostTargetComm Property values are 'RS232' and
'TcpIp'.

Select RS-232 or TCP/IP from the
Communication type list in the
Target Properties pane of xPC
Target Explorer.

If you select RS-232, you alsomust
set the property RS232HostPort.
If you select TCP/IP, then you
also need to set all properties that
start with TcpIp.

28-88

xpctarget.env.set (env object)

Environment Property Description

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate Property values are '115200',
'57600', '38400', '19200',
'9600', '4800’, '2400', and
'1200'.

Select 1200, 2400, 48 00, 9600,
19200, 38400, 57600, or 115200
from the Baud rate list in the
Target Properties pane of xPC
Target Explorer.

RS232HostPort Property values are 'COM1' and
'COM2'.

Select COM1 or COM2 from the
Host port list in the Target
Properties pane of xPC
Target Explorer. The software
automatically determines the
COM port on the target computer.

Before you can select an RS-232
port, you need to set the
HostTargetComm property to
RS232.

28-89

xpctarget.env.set (env object)

Environment Property Description

TcpIpGateway Property value is
'xxx.xxx.xxx.xxx'.

Enter the IP address for your
gateway in the Gateway box in
the Target Properties pane
of xPC Target Explorer. This
property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this
property. If your LAN does not
use gateways, you do not need to
change this property. Ask your
system administrator.

TcpIpSubNetMask Property value is
'xxx.xxx.xxx.xxx'.

Enter the subnet mask of your
LAN in the Subnet mask box in
the Target Properties pane of
xPC Target Explorer. Ask your
system administrator for this
value.

For example, your subnet mask
could be 255.255.255.0.

28-90

xpctarget.env.set (env object)

Environment Property Description

TcpIpTargetAddress Property value is
'xxx.xxx.xxx.xxx'.

Enter a valid IP address for
your target computer in the
IP address box in the Target
Properties pane of xPC Target
Explorer. Ask your system
administrator for this value.

For example, 192.168.0.10.

TcpIpTargetBusType Property values are 'PCI', 'ISA',
and `USB'.

Select PCI, ISA, or USB from the
Bus type list in the Target
Properties pane of xPC Target
Explorer. This property is set by
default to PCI, and determines
the bus type of your target
computer. You do not need to
define a bus type for your host
computer, which can be the same
or different from the bus type in
your target computer.

If TcpIpTargetBusType is set
to PCI, then the properties
TcpIpISAMemPort and
TcpIpISAIRQ have no effect
on TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values
for TcpIpISAMemPort and
TcpIpISAIRQ.

28-91

xpctarget.env.set (env object)

Environment Property Description

TcpIpTargetDriver Property values are '3C90x',
`I8254x', 'I82559', 'NE2000',
'NS83815', 'R8139', 'R8168',
`Rhine', 'RTLANCE',
'SMC91C9X', `USBAX772',
`USBAX172', and `Auto'.

Select THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,
Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto
from the Target driver list in
the Target Properties pane of
xPC Target Explorer.

TcpIpTargetISAIRQ Property value is 'n', where n is
between 5 and 15 inclusive.

Select an IRQ value from the IRQ
list in the Target Properties
pane of xPC Target Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on the ISA-bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings

28-92

xpctarget.env.set (env object)

Environment Property Description

leads to a conflict in your target
computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

TcpIpTargetISAMemPort Property value is '0xnnnn'.

Enter an I/O port base address in
the Address box in the Target
Properties pane of xPC Target
Explorer.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to around 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/O
port base address and make the
corresponding changes to your
jumper settings.

TcpIpTargetPort Property value is 'xxxxx'.

Enter a port address greater than
20000 in the Port box in the

28-93

xpctarget.env.set (env object)

Environment Property Description

Target Properties pane of xPC
Target Explorer.

This property is set by default
to 22222. The default value is
higher than the reserved area
(telnet, ftp, . . .) and is only of
use on the target computer.

Target Settings

Environment Property Description

EthernetIndex Property value is ’n’, where n indicates the index
number for the Ethernet card on a target computer.
Note that the (n-1)th Ethernet card on the target
computer has an index number 'n'. The default index
number is 0.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
booting.

LegacyMultiCoreConfig Property values are 'on' and 'off' (the default).

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

28-94

xpctarget.env.set (env object)

Environment Property Description

MaxModelSize Property values are '1MB' (the default), '4MB', and
'16MB'.

Select 1 MB, 4 MB, or 16 MB from theModel size list in
the Target Properties pane of xPC Target Explorer.

Choosing the maximum model size reserves the
specified amount of memory on the target computer for
the target application. The remaining memory is used
by the kernel and by the heap for data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error.

Note

• BootFloppy and DOSLoader modes ignore this value.

• In StandAlone mode, you can only use MaxModelSize
values '1MB' and '4MB'.

MulticoreSupport Property values are 'on' and 'off' (the default).

Select or clear the Multicore CPU check box in the
Target Properties pane of xPC Target Explorer.

If your target computer has multicore processors, set
this value to 'on' to take advantage of these processors
for background tasks. Otherwise, set this value to
'off'.

Name Target computer name.

28-95

xpctarget.env.set (env object)

Environment Property Description

NonPentiumSupport Property values are 'on' and 'off' (the default).

Select or clear the Target is a 386/486 check box in
the Target Properties pane of xPC Target Explorer.

Set this value to 'on' if your target computer has a
386 or 486 compatible processor. Otherwise, set it to
'off'. If your target computer has a Pentium or higher
compatible processor, selecting this check box will slow
the performance of your target computer.

SecondaryIDE Property values are 'on' and 'off' (the default).

Select or clear the Secondary IDE check box in the
Target Properties pane of xPC Target Explorer.

Set this value to 'on' only if you want to use the disks
connected to a secondary IDE controller. If you do not
have disks connected to the secondary IDE controller,
leave this value set to 'off'.

ShowHardware Property values are `on' and `off' (the default).

If you create a target boot kernel when ShowHardware
is `on' and boot the target computer with it, the kernel
displays on the target monitor the index, bus, slot,
function, and target driver for each Ethernet card.

Note The host computer cannot communicate with
the target computer after the kernel boots with
ShowHardware set.

28-96

xpctarget.env.set (env object)

Environment Property Description

TargetRAMSizeMB Property values are 'Auto' (the default) and 'Manual'.

Under RAM size, click the Auto orManual button in
the Target Properties pane of xPC Target Explorer.
If you click Manual, enter the amount of RAM, in
megabytes, installed on the target computer in the
Size(MB) box.

TargetRAMSizeMB defines the total amount of installed
RAM in the target computer. This RAM is used for
the kernel, target application, data logging, and other
functions that use the heap.

If TargetRAMSizeMB is set to Auto, the target
application automatically determines the amount of
memory up to 64 MB. If the target computer does not
contain more than 64 MB of RAM or you do not want
to use more than 64 MB, select Auto. If the target
computer has more than 64 MB of RAM and you want
to use more than 64 MB, select Manual and enter the
amount of RAM installed in the target computer.

Note The xPC Target kernel can use only 2 GB of
memory.

28-97

xpctarget.env.set (env object)

Environment Property Description

TargetScope Property values are 'Disabled' and 'Enabled' (the
default).

Select or clear the Graphics mode check box in the
Target Properties pane of xPC Target Explorer.

If you set TargetScope to Disabled, the target
computer displays information as text.

Tip To use all the features of the target scope, you also
need to install a keyboard on the target computer.

USBSupport Property values are 'on' (the default) and 'off'.

Select or clear the USB Support check box in the
Target Properties pane of xPC Target Explorer.

Set this value to 'on' if you want to use a USB port on
the target computer; for example, to connect a USB
mouse. Otherwise, set it to 'off'.

Boot Configuration

Environment Property Description

BootFloppyLocation Drive name for creation of target
boot disk.

CDBootImageLocation Location of cdboot.iso file for
creation of CD target boot disk.

DOSLoaderLocation Location of DOSLoader files
to boot target computers from
devices other than floppy disk or
CD.

28-98

xpctarget.env.set (env object)

Environment Property Description

EmbeddedOption Property values are 'Disabled'
and 'Enabled'. This property is
read only.

Note that the xPC Target
Embedded Option product is
enabled only if you purchase an
additional license.

TargetBoot Property values are
'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot',
and 'StandAlone'.

Select Removable Disk, CD, DOS
Loader, Network, or Stand Alone
from the Boot mode list in the
Target Properties pane of xPC
Target Explorer.

If your license file does not include
the license for the xPC Target
Embedded Option product, your
only options are Removable Disk,
CD, DOS Loader, and Network.
With the xPC Target Embedded
Option product licensed and
installed, you have the additional
choice of Stand Alone.

Tip Click the Create boot disk
button to create a bootable image
in the specified boot mode.

TargetMACAddress Physical target computer MAC
address from which to accept boot

28-99

xpctarget.env.set (env object)

Environment Property Description

requests when booting within
a dedicated network. Format
the MAC address as six pairs of
hexadecimal numbers, separated
by colons:

xx:xx:xx:xx:xx:xx

To update the MAC address
in xPC Target Explorer, first
click the Reset button in the
Target Properties pane. You
can then click the Specify new
MAC address button to enter
a MAC address manually in the
MAC address box. If you do not
enter a MAC address manually,
the software will obtain the
MAC address automatically the
next time you restart the target
computer.

See Also xpctarget.env.get (env object)

28-100

xpctarget.fs Class

Purpose Manage the directories and files on the target computer

Description This class includes the directory methods from xpctarget.fsbase
Class and implements file access methods used on the target computer.

Constructor

Constructor Description

xpctarget.fs Create file system object

Methods

These methods are inherited from xpctarget.fsbase Class.

Method Description

xpctarget.fsbase.cd Change folder on target computer

xpctarget.fsbase.dir List contents of current folder on target computer

xpctarget.fsbase.mkdir Make folder on target computer

xpctarget.fsbase.pwd Current folder path of target computer

xpctarget.fsbase.rmdir Remove folder from target computer

These methods are specific to class fs.

Method Description

xpctarget.fs.diskinfo Information about target computer drive

xpctarget.fs.fclose Close open target computer file(s)

xpctarget.fs.fileinfo Target computer file information

xpctarget.fs.filetable Information about open files in target computer file system

xpctarget.fs.fopen Open target computer file for reading

28-101

xpctarget.fs Class

Method Description

xpctarget.fs.fread Read open target computer file

xpctarget.fs.fwrite Write binary data to open target computer file

xpctarget.fs.getfilesizeSize of file on target computer

xpctarget.fs.removefileRemove file from target computer

28-102

xpctarget.fs

Purpose Create xPC Target file system object

Syntax MATLAB command line

filesys_object = xpctarget.fs('mode', 'arg1', 'arg2')

Arguments filesys_object Variable name to reference the file system object.

mode Optionally, enter the communication mode:

Note RS-232 Host-Target communication mode
will be removed in a future release. Use TCP/IP
instead.

TCPIP Specify TCP/IP connection with
target computer.

RS232 Specify RS-232 connection with
target computer.

arg1 Optionally, enter an argument based on the mode
value:

IP address If mode is 'TCPIP', enter the IP
address of the target computer.

COM port If mode is 'RS232', enter the host
COM port.

arg2 Optionally, enter an argument based on the mode
value:

Port If mode is 'TCPIP', enter the port
number for the target computer.

Baud rate If mode is 'RS232', enter the baud
rate for the connection between the
host and target computer.

28-103

xpctarget.fs

Description Constructor of a file system object (xpctarget.fs Class). The file
system object represents the file system on the target computer. You
work with the file system by changing the file system object using
methods.

If you have one target computer object, or if you designate a target
computer as the default one in your system, use the syntax

filesys_object=xpctarget.fs

If you have multiple target computers in your system, or if you want to
identify a target computer with the file system object, use the following
syntax to create the additional file system objects.

filesys_object=xpctarget.fs('mode', 'arg1', 'arg2')

Examples In the following example, a file system object for a target computer with
an RS-232 connection is created.

fs1=xpctarget.fs('RS232','COM1','115200')

fs1 =
xpctarget.fs

Optionally, if you have an xpctarget.xpc object, you can construct an
xpctarget.fs object by passing the xpctarget.xpc object variable to
the xpctarget.fs constructor as an argument.

>> tg1=xpctarget.xpc('RS232','COM1','115200');
>> fs2=xpctarget.fs(tg1)

fs2 =

xpctarget.fs

28-104

xpctarget.fs.diskinfo

Purpose Information about target computer drive

Syntax MATLAB command line

diskinfo(filesys_obj,target_PC_drive)
filesys_obj.diskinfo(target_PC_drive)

Arguments filesys_obj Name of the xpctarget.fs file system object.

target_PC_drive Name of the target computer drive for which
to return information.

Description Method of xpctarget.fs objects. From the host computer, returns disk
information for the specified target computer drive.

28-105

xpctarget.fs.diskinfo

Examples Return disk information for the target computer C:\ drive for the file
system object fsys.

diskinfo(fsys,'C:\') or fsys.diskinfo('C:\')
ans =

Label: 'SYSTEM '
DriveLetter: 'C'

Reserved: ''
SerialNumber: 1.0294e+009

FirstPhysicalSector: 63
FATType: 32

FATCount: 2
MaxDirEntries: 0

BytesPerSector: 512
SectorsPerCluster: 4

TotalClusters: 2040293
BadClusters: 0

FreeClusters: 1007937
Files: 19968

FileChains: 22480
FreeChains: 1300

LargestFreeChain: 64349

28-106

xpctarget.fs.fclose

Purpose Close open target computer file(s)

Syntax MATLAB command line

fclose(filesys_obj,file_ID)
filesys_obj.fclose(file_ID)

Arguments filesys_obj Name of the xpctarget.fs file system object.

file_ID File identifier of the file to close.

Description Method of xpctarget.fs objects. From the host computer, closes
one or more open files in the target computer file system (except
standard input, output, and error). The file_ID argument is the file
identifier associated with an open file (see xpctarget.fs.fopen and
xpctarget.fs.filetable). You cannot have more than eight files open
in the file system.

Examples Close the open file identified by the file identifier h in the file system
object fsys.

fclose(fsys,h) or fsys.fclose(h)

See Also fclose | xpctarget.fs.fopen | xpctarget.fs.fread |
xpctarget.fs.filetable | xpctarget.fs.fwrite

28-107

xpctarget.fs.fileinfo

Purpose Target computer file information

Syntax MATLAB command line

fileinfo(filesys_obj,file_ID)
filesys_obj.fileinfo(file_ID)

Arguments filesys_obj Name of the xpctarget.fs file system object.

file_ID File identifier of the file for which to get file
information.

Description Method of xpctarget.fs objects. From the host computer, gets the
information for the file associated with file_ID.

Examples Return file information for the file associated with the file identifier
h in the file system object fsys.

fileinfo(fsys,h) or fsys.fileinfo(h)
ans =

FilePos: 0
AllocatedSize: 12288
ClusterChains: 1

VolumeSerialNumber: 1.0450e+009
FullName: 'C:\DATA.DAT'

28-108

xpctarget.fs.filetable

Purpose Information about open files in target computer file system

Syntax MATLAB command line

filetable(filesys_obj)
filesys_obj.filetable

Arguments filesys_obj Name of the xpctarget.fs file system object.

Description Method of xpctarget.fs objects. From the host computer, displays a
table of the open files in the target computer file system. You cannot
have more than eight files open in the file system.

Examples Return a table of the open files in the target computer file system for
the file system object fsys.

filetable(fsys) or fsys.filetable
ans =
Index Handle Flags FilePos Name
--

0 00060000 R__ 8512 C:\DATA.DAT
1 00080001 R__ 0 C:\DATA1.DAT
2 000A0002 R__ 8512 C:\DATA2.DAT
3 000C0003 R__ 8512 C:\DATA3.DAT
4 001E000S R__ 0 C:\DATA4.DAT

The table returns the open file handles in hexadecimal. To convert a
handle to one that other xpctarget.fs methods, such as fclose, can
use, use the hex2dec function.

h1 = hex2dec('001E0001'))
h1 =
1966081

To close that file, use the xpctarget.fs fclose method.

28-109

xpctarget.fs.filetable

fsys.fclose(h1);

See Also xpctarget.fs.fopen | xpctarget.fs.fclose

28-110

xpctarget.fs.fopen

Purpose Open target computer file for reading

Syntax MATLAB command line

file_ID = fopen(file_obj,'file_name')
file_ID = file_obj.fopen('file_name')
file_ID = fopen(file_obj,'file_name',permission)
file_ID = file_obj.fopen('file_name',permission)

Arguments file_obj Name of the xpctarget.fs object.

'file_name' Name of the target computer to open.

permission Values are 'r', 'w', 'a', 'r+', 'w+', or 'a+'.
This argument is optional with 'r' as the
default value.

Description Method of xpctarget.fs objects. From the host computer, opens the
specified filename on the target computer for binary access.

The permission argument values are

• 'r'

Open the file for reading (default). The method does nothing if the
file does not already exist.

• 'w'

Open the file for writing. The method creates the file if it does not
already exist.

• 'a'

Open the file for appending to the file. Initially, the file pointer is at
the end of the file. The method creates the file if it does not already
exist.

• 'r+'

28-111

xpctarget.fs.fopen

Open the file for reading and writing. Initially, the file pointer is at
the beginning of the file. The method does nothing if the file does
not already exist.

• 'w+'

Open the file for reading and writing. The method empties the file
first, if the file already exists and has content, and places the file
pointer at the beginning of the file. The method creates the file if
it does not already exist.

• 'a+'

Open the file for reading and appending to the file. Initially, the file
pointer is at the beginning of the file. The method creates the file if
it does not already exist.

You cannot have more than eight files open in the file system.
This method returns the file identifier for the open file in file_ID.
You use file_ID as the first argument to the other file I/O
methods (such as xpctarget.fs.fclose, xpctarget.fs.fread, and
xpctarget.fs.fwrite).

Examples Open the file data.dat in the target computer file system object fsys.
Assign the resulting file handle to a variable for reading.

h = fopen(fsys,'data.dat') or fsys.fopen('data.dat')
ans =

2883584
d = fread(h);

See Also fopen | xpctarget.fs.fclose | xpctarget.fs.fread |
xpctarget.fs.fwrite

28-112

xpctarget.fs.fread

Purpose Read open target computer file

Syntax MATLAB command line

A = fread(file_obj,file_ID)
A = file_obj.fread(file_ID)
A = fread(file_obj, file_ID, offset, numbytes)
A = file_obj.fread(file_ID, offset, numbytes)

Arguments file_obj Name of the xpctarget.fs object.

file_ID File identifier of the file to read.

offset Position from the beginning of the file from which
fread can start to read.

numbytes Maximum number of bytes fread can read.

Description Method of xpctarget.fs objects. From the host computer, A =
fread(file_obj,file_ID) or A = file_obj.fread(file_ID) reads
all the binary data from the file on the target computer and writes it
into matrix A. The file_ID argument is the file identifier associated
with an open file (see xpctarget.fs.fopen).

From the host computer, A = fread(file_obj, file_ID, offset,
numbytes) or A = file_obj.fread(file_ID, offset, numbytes)
reads a block of bytes from file_ID and writes the block into matrix A.
The offset argument specifies the position from the beginning of the
file from which this function can start to read. numbytes specifies the
maximum number of bytes to read. To get a count of the total number
of bytes read into A, use the following:

count = length(A);

28-113

xpctarget.fs.fread

length(A) might be less than the number of bytes requested if that
number of bytes are not currently available. It is zero if the operation
reaches the end of the file.

Examples Open the file data.dat in the target computer file system object fsys.
Assign the resulting file handle to a variable for reading.

h = fopen(fsys,'data.dat') or fsys.fopen('data.dat')
ans =

2883584
d = fread(h);

This reads the file data.dat and stores all of the contents of the file to
d. This content is in the xPC Target file format.

See Also fread | xpctarget.fs.fclose | xpctarget.fs.fopen |
xpctarget.fs.fwrite

28-114

xpctarget.fs.fwrite

Purpose Write binary data to open target computer file

Syntax MATLAB command line

fwrite(file_obj,file_ID,A)
file_obj.fwrite(file_ID,A)

Arguments file_obj Name of the xpctarget.fs object.

file_ID File identifier of the file to write.

A Elements of matrix A to be written to the specified file.

Description Method of xpctarget.fs objects. From the host computer, writes
the elements of matrix A to the file identified by file_ID. The data
is written to the file in column order. The file_ID argument is the
file identifier associated with an open file (see xpctarget.fs.fopen).
fwrite requires that the file be open with write permission.

Examples Open the file data.dat in the target computer file system object fsys.
Assign the resulting file handle to a variable for writing.

h = fopen(fsys,'data.dat','w')

or

fsys.fopen('data.dat','w')

ans =
2883584

d = fwrite(fsys,h,magic(5));

This writes the elements of matrix A to the file handle h. This content is
written in column order.

See Also fwrite | xpctarget.fs.fclose | xpctarget.fs.fopen |
xpctarget.fs.fread

28-115

xpctarget.fs.getfilesize

Purpose Size of file on target computer

Syntax MATLAB command line

getfilesize(file_obj,file_ID)
file_obj.getfilesize(file_ID)

Arguments file_obj Name of the xpctarget.fs object.

file_ID File identifier of the file to get the size of.

Description Method of xpctarget.fs objects. From the host computer, gets the
size (in bytes) of the file identified by the file_ID file identifier on the
target computer file system. Use the xPC Target file object method
xpctarget.fs.fopen to open the file system object.

Examples Get the size of the file identifier h for the file system object fsys.

getfilesize(fsys,h) or fsys.getfilesize(h)

See Also xpctarget.fs.fopen

28-116

xpctarget.fs.readxpcfile

Purpose Interpret raw data from xPC Target file format

Syntax file=readxpcfile(data)
readxpcfile('filename')

Arguments data Vector of uint8 bytes.

'filename' File from which the vector of uint8 bytes is read.
Vector is written

Description The readxpcfile function converts xPC Target file format content (in
bytes) to double precision data. A file scope creates the data.

The readxpcfile function returns a structure that contains the
following fields:

• version

Not used.

• sector

Not used.

• headersize

Not used.

• numSignals

Array of signal names.

• data

Array of signal data.

• signalNames

Cell array of signal names.

After you download the data from a target computer, use one of the
following to read the data:

28-117

xpctarget.fs.readxpcfile

• To read the data after you download it to the target computer, use
the fread function

• To download the data to the target computer and read it, use the
xpctarget.fs.fread method.

file=readxpcfile(data) converts data to double precision data
representing the signals and timestamps.

readxpcfile('filename') converts contents of 'filename' to double
precision data representing the signals and timestamps.

Examples Use the xpctarget.fs object to convert data:

file=xpctarget.fs;
h=file.fopen('filename');
data=file.fread(h);
file.fclose(h);
file = readxpcfile(data);

Use the xpctarget.ftp object to copy the file from the target computer
to the host computer, then read and convert the data.

xpcftp=xpctarget.ftp
xpcftp.get('filename')
datafile = readxpcfile('filename') % Convert the data

Use the xpctarget.ftp object to copy the file from the target computer
to the host computer, then read and convert the data separately.

xpcftp=xpctarget.ftp

xpcftp.get('filename')

handle=fopen('filename')

data=fread(handle,'*uint8'); % Data should be read in uint8 format

fclose(handle);

data=data';

datafile = readxpcfile(data); % Convert the data

28-118

xpctarget.fs.readxpcfile

See Also xpctarget.ftp.get (ftp) | xpctarget.fs.fopen |
xpctarget.fs.fread

28-119

xpctarget.fs.removefile

Purpose Remove file from target computer

Syntax MATLAB command line

removefile(file_obj,file_name)
file_obj.removefile(file_name)

Arguments file_name Name of the file to remove from the target
computer file system.

file_obj Name of the xpctarget.fs object.

Description Method of xpctarget.fs objects. Removes a file from the target
computer file system.

Note You cannot recover this file once it is removed.

Examples Remove the file data2.dat from the target computer file system fsys.

removefile(fsys,'data2.dat')

or

fsys.removefile('data2.dat')

28-120

xpctarget.fs.selectdrive

Purpose Select target computer drive

Syntax MATLAB command line

selectdrive(file_obj,'drive')
file_obj.selectdrive('drive')

Arguments drive Name of the drive to set.

file_obj Name of the xpctarget.fs object.

Description Method of xpctarget.fs objects. selectdrive sets the current drive of
the target computer to the specified string. Enter the drive string with
an extra backslash (\). For example, D:\\ for the D:\ drive.

Note Use the xpctarget.fsbase.cd method instead to get the same
behavior.

Examples Set the current target computer drive to D:\.

selectdrive(fsys,'D:\\')

or

fsys.selectdrive('D:\\')

28-121

xpctarget.fsbase Class

Purpose Base class of file system and file transfer protocol (FTP) classes

Description This class is the base class for xpctarget.fs Class and xpctarget.ftp
Class. All methods are inherited by the derived classes. The constructor
for this class is called implicitly when the constructors for the derived
classes are called:

Methods

These methods are inherited by the derived classes.

Method Description

xpctarget.fsbase.cd Change folder on target computer

xpctarget.fsbase.dir List contents of current folder on target computer

xpctarget.fsbase.mkdir Make folder on target computer

xpctarget.fsbase.pwd Current folder path of target computer

xpctarget.fsbase.rmdir Remove folder from target computer

28-122

xpctarget.fsbase.cd

Purpose Change folder on target computer

Syntax MATLAB command line

cd(file_obj,target_PC_dir)
file_obj.cd(target_PC_dir)

Arguments file_obj Name of the xpctarget.ftp or xpctarget.fs
object.

target_PC_dir Name of the target computer folder to change to.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. From the host computer, changes folder on the target computer.

Examples Change folder from the current to one named logs for the file system
object fsys.

cd(fsys,logs) or fsys.cd(logs)

Change folder from the current to one named logs for the FTP object f.

cd(f,logs) or f.cd(logs)

See Also cd | xpctarget.fsbase.mkdir | xpctarget.fsbase.pwd

28-123

xpctarget.fsbase.dir

Purpose List contents of current folder on target computer

Syntax MATLAB command line

dir(file_obj)

Arguments file_obj Name of the xpctarget.ftp or xpctarget.fs
object.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. From the host computer, lists the contents of the current folder
on the target computer.

To get the results in an M-by-1 structure, use a syntax like
ans=dir(file_obj). This syntax returns a structure like the following:

ans =
1x5 struct array with fields:
name
date
time
bytes
isdir

where

• name — Name of an object in the folder, shown as a cell array. The
name, stored in the first element of the cell array, can have up to
eight characters. The three-character file extension is stored in the
second element of the cell array.

• date — Date of the last save of that object

• time — Time of the last save of that object

• bytes — Size in bytes of that object

• isdir — Logical value indicating that the object is (1) or is not (0)
a folder

28-124

xpctarget.fsbase.dir

Examples List the contents of the current folder for the file system object fsys.
You can also list the contents of the current folder for the FTP object f.

dir(fsys) or dir(f)
4/12/1998 20:00 222390 IO SYS
11/2/2003 13:54 6 MSDOS SYS
11/5/1998 20:01 93880 COMMAND COM
11/2/2003 13:54 <DIR> 0 TEMP
11/2/2003 14:00 33 AUTOEXEC BAT
11/2/2003 14:00 512 BOOTSECT DOS
18/2/2003 16:33 4512 SC1SIGNA DAT

18/2/2003 16:17 <DIR> 0 FOUND 000
29/3/2003 19:19 8512 DATA DAT
28/3/2003 16:41 8512 DATADATA DAT
28/3/2003 16:29 4512 SC4INTEG DAT
1/4/2003 9:28 201326592 PAGEFILE SYS

11/2/2003 14:13 <DIR> 0 WINNT
4/5/2001 13:05 214432 NTLDR '

4/5/2001 13:05 34468 NTDETECT COM
11/2/2003 14:15 <DIR> 0 DRIVERS
22/1/2001 11:42 217 BOOT INI'

28/3/2003 16:41 8512 A DAT
29/3/2003 19:19 2512 SC3SIGNA DAT
11/2/2003 14:25 <DIR> 0 INETPUB
11/2/2003 14:28 0 CONFIG SYS
29/3/2003 19:10 2512 SC3INTEG DAT
1/4/2003 18:05 2512 SC1GAIN DAT
11/2/2003 17:26 <DIR> 0 UTILIT~1

You must use the dir(f) syntax to list the contents of the folder.

See Also dir | xpctarget.fsbase.mkdir | xpctarget.fsbase.cd |
xpctarget.fsbase.pwd

28-125

xpctarget.fsbase.mkdir

Purpose Make folder on target computer

Syntax MATLAB command line

mkdir(file_obj,dir_name)
file_obj.mkdir(dir_name)

Arguments file_obj Name of the xpctarget.ftp or xpctarget.fs object.

dir_name Name of the folder to be created.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. From the host computer, makes a new folder in the current
folder on the target computer file system.

Note that to delete a folder from the target computer, you need to reboot
the PC into DOS or some other operating system and use a utility in
that system to delete the folder.

Examples Create a new folder, logs, in the target computer file system object
fsys.

mkdir(fsys,logs)

or

fsys.mkdir(logs)

Create a new folder, logs, in the target computer FTP object f.

mkdir(f,logs) or f.mkdir(logs)

See Also mkdir | xpctarget.fsbase.dir | xpctarget.fsbase.pwd

28-126

xpctarget.fsbase.pwd

Purpose Current folder path of target computer

Syntax MATLAB command line

pwd(file_obj)
file_obj.pwd

Arguments file_obj Name of the xpctarget.ftp or xpctarget.fs object.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. Returns the pathname of the current target computer folder.

Examples Return the target computer current folder for the file system object
fsys.

pwd(fsys) or fsys.pwd

Return the target computer current folder for the FTP object f.

pwd(f) or f.pwd

See Also pwd | xpctarget.fsbase.dir | xpctarget.fsbase.mkdir

28-127

xpctarget.fsbase.rmdir

Purpose Remove folder from target computer

Syntax MATLAB command line

rmdir(file_obj,dir_name)
file_obj.rmdir(dir_name)

Arguments dir_name Name of the folder to remove from the target
computer file system.

file_obj Name of the xpctarget.fs object.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. Removes a folder from the target computer file system.

Note You cannot recover this folder once it is removed.

Examples Remove the folder data2dir.dat from the target computer file system
fsys.

rmdir(f,'data2dir.dat')

or

fsys.rmdir('data2dir.dat')

28-128

xpctarget.ftp Class

Purpose Manage the directories and files on the target computer via file transfer
protocol (FTP)

Description The FTP object represents the file on the target computer. You work
with the file directories using the inherited methods, and transport the
file between the host and target computers using the xpctarget.ftp
methods.

Constructor

Constructor Description

xpctarget.ftp Create file transfer protocol (FTP) object

Methods

These methods are inherited from xpctarget.fsbase Class.

Method Description

xpctarget.fsbase.cd Change folder on target computer

xpctarget.fsbase.dir List contents of current folder on target computer

xpctarget.fsbase.mkdir Make folder on target computer

xpctarget.fsbase.pwd Current folder path of target computer

xpctarget.fsbase.rmdir Remove folder from target computer

These methods are specific to class ftp.

Method Description

xpctarget.ftp.get
(ftp)

Retrieve copy of requested file from target computer

xpctarget.ftp.put Copy file from host computer to target computer

28-129

xpctarget.ftp

Purpose Create file transfer protocol (FTP) object

Syntax MATLAB command line

file_object = xpctarget.ftp('mode', 'arg1', 'arg2')

Arguments file_objectVariable name to reference the FTP object.

mode Optionally, enter the communication mode:

Note RS-232 Host-Target communication mode will be
removed in a future release. Use TCP/IP instead.

TCPIP Specify TCP/IP connection with target
computer.

RS232 Specify RS-232 connection with target
computer.

arg1 Optionally, enter an argument based on the mode value:

IP address If mode is 'TCPIP', enter the IP address
of the target computer.

COM port If mode is 'RS232', enter the host COM
port.

arg2 Optionally, enter an argument based on the mode value:

Port If mode is 'TCPIP', enter the port
number for the target computer.

Baud rate If mode is 'RS232', enter the baud rate
for the connection between the host
and target computer.

28-130

xpctarget.ftp

Description Constructor of an FTP object (xpctarget.ftp Class). The FTP object
represents the file on the target computer. You work with the file by
changing the file object using methods.

If you have one target computer object, or if you designate a target
computer as the default one in your system, use the syntax

file_object=xpctarget.ftp

If you have multiple target computers in your system, or if you want to
identify a target computer with the file object, use the following syntax
to create the additional file objects.

file_object=xpctarget.ftp('mode', 'arg1', 'arg2')

Examples In the following example, a file object for a target computer with an
RS-232 connection is created.

f=xpctarget.ftp('RS232','COM1','115200')

f =
xpctarget.ftp

Optionally, if you have an xpctarget.xpc object, you can construct an
xpctarget.ftp object by passing the xpctarget.xpc object variable to
the xpctarget.ftp constructor as an argument.

>> tg1=xpctarget.xpc('RS232','COM1','115200');
>> f2=xpctarget.ftp(tg1)

f2 =

xpctarget.ftp

28-131

xpctarget.ftp.get (ftp)

Purpose Retrieve copy of requested file from target computer

Syntax MATLAB command line

get(file_obj,file_name)
file_obj.get(file_name)

Arguments file_obj Name of the xpctarget.ftp object.

file_name Name of a file on the target computer.

Description Method of xpctarget.ftp objects. Copies the specified filename
from the target computer to the current folder of the host computer.
file_name must be either a fully qualified filename on the target
computer, or located in the current folder of the target computer.

Examples Retrieve a copy of the file named data.dat from the current folder of
the target computer file object f.

get(f,'data.dat') or f.get('data.dat')
ans = data.dat

See Also xpctarget.ftp.put

28-132

xpctarget.ftp.put

Purpose Copy file from host computer to target computer

Syntax MATLAB command line

put(file_obj,file_name)
file_obj.put(file_name)

Arguments file_obj Name of the xpctarget.ftp object.

file_name Name of the file to copy to the target computer.

Description Method of xpctarget.ftp objects. Copies a file from the host computer
to the target computer. file_name must be a file in the current folder
of the host computer. The method writes file_name to the target
computer disk.

put might be slower than the get operation for the same file. This is
expected behavior.

Examples Copy the file data2.dat from the current folder of the host computer to
the current folder of the target computer FTP object f.

put(f,'data2.dat')

or

fsys.put('data2.dat')

See Also xpctarget.fsbase.dir | xpctarget.ftp.get (ftp)

28-133

xpctarget.targets Class

Purpose Container object to manage target computer environment collection
objects

Description The targets class contains a collection of environment settings, stored
in xpctarget.env Class objects.

Constructor

Constructor Description

xpctarget.targets Create container object to manage target computer
environment collection objects

Methods

Method Description

xpctarget.targets.Add (env
collection object)

Add a new xPC Target environment
collection object.

xpctarget.targets.getTargetNames
(env collection object)

Retrieve all xPC Target environment
collection object names.

xpctarget.targets.Item
(env collection object)

Retrieve xPC Target environment
collection object.

xpctarget.targets.makeDefault
(env collection object)

Set target computer environment
collection object as default.

xpctarget.targets.Remove
(env collection object)

Remove an xPC Target environment
collection object.

28-134

xpctarget.targets Class

Properties

Property Description Writable

DefaultTarget Returns an xpctarget.env object
that references the default target
computer object environment.

No

NumTargets Returns the number of target
computer environment objects in the
container.

No

28-135

xpctarget.targets

Purpose Create container object to manage target computer environment
collection objects

Syntax MATLAB command line

env_collection_object = xpctarget.targets

Description Constructor for target environment object collection
(xpctarget.targets Class). The collection manages the
environment object (xpctarget.env Class) for a multitarget xPC
Target system. (This is in contrast to the setxpcenv and getxpcenv
functions, which manage the environment properties for the default
target computer.) You work with the environment objects by changing
the environment properties using methods.

Use the syntax

env_object = xpctarget.targets

Access properties of an env_collection_object
object with env_collection_object.propertyname,
env_collection_object.propertyname.propertyname, or with
the xpctarget.targets.get (env collection object) and
xpctarget.targets.set (env collection object) commands.

Access an individual environment object via xpctarget.targets.Item
(env collection object),

Examples Create an environment container object. With this object, you can
manage the environment collection objects for all the targets in your
system.

tgs=xpctarget.targets

See Also xpctarget.targets.get (env collection object) |
xpctarget.targets.set (env collection object)

28-136

xpctarget.targets.Add (env collection object)

Purpose Add new xPC Target environment collection object

Syntax MATLAB command line

env_collection_object.Add

Description Method of xpctarget.targets objects. Add creates an xPC Target
environment collection object on the host computer.

Examples Add a new xPC Target environment collection object to the system.
Assume that tgs represents the environment collection object. The first
get(tgs) function returns the current number of target computers.
The second function returns the number of target computers after you
add one.

tgs=xpctarget.targets;

get(tgs);

tgs.Add;

get(tgs);

See Also xpctarget.targets | xpctarget.targets.set (env collection
object) | xpctarget.targets.get (env collection object)

28-137

xpctarget.targets.get (env collection object)

Purpose Return target object collection environment property values

Syntax MATLAB command line

get(env_collection_object, 'env_collection_object_property')

Arguments env_collection_object Name of a collection of target
objects.

'env_collection_object_
property'

Name of a target object
environment property.

Description get gets the values of environment properties for a collection of target
objects.

The environment properties for a target environment object collection
are listed in the following table. This table includes a description of the
properties and which properties you can change directly by assigning
a value.

Property Description Writable

DefaultTarget Contains an instance of the
default target environment object
(xpctarget.env).

No

NumTargets Contains the number of target objects
in the xPC Target system. Note that
this is not the actual number of target
computers in the system.

No

Examples List the values of all the target object collection environment property
values. Assume that tgs represents the target object collection
environment.

tgs=xpctarget.targets;

get(tgs);

28-138

xpctarget.targets.get (env collection object)

List the value for the target object environment collection property
NumTargets. Note that the property name is a string, in quotation
marks, and not case sensitive.

get(tgs,'NumTargets') or tgs.get('NumTargets'))

See Also get | xpctarget.targets.set (env collection object) | set

28-139

xpctarget.targets.getTargetNames (env collection object)

Purpose Retrieve xPC Target environment object names

Syntax MATLAB command line

env_collection_object.getTargetNames

Description Method of xpctarget.targets objects. getTargetNames retrieves the
names of all existing xPC Target environment collection objects from
the xpctarget.targets class.

Examples Retrieve the names of all xPC Target environment collection objects in
the system. Assume that tgs represents the target object collection
environment.

tgs=xpctarget.targets;

get(tgs);

tgs.getTargetNames

See Also xpctarget.targets | xpctarget.targets.set (env collection
object) | xpctarget.targets.get (env collection object)

28-140

xpctarget.targets.Item (env collection object)

Purpose Retrieve specific xPC Target environment (env) object

Syntax MATLAB command line

env_collection_object.Item('env_object_name')

Description Method of xpctarget.targets objects. Item retrieves a
specific environment object (xpctarget.env Class) from the
xpctarget.targets class. Use this method to work with a particular
target computer environment object.

Examples Retrieve a new xPC Target environment collection object from the
system. Assume that tgs represents the target object collection
environment.

tgs=xpctarget.targets;

get(tgs);

tgs.getTargetNames

tgs.Item('TargetPC1')

See Also xpctarget.targets | xpctarget.targets.set (env collection
object) | xpctarget.targets.get (env collection object)

28-141

xpctarget.targets.makeDefault (env collection object)

Purpose Set specific target computer environment object as default

Syntax MATLAB command line

env_collection_object.makeDefault(`env_object_name')

Description Method of xpctarget.targets objects. makeDefault sets the specified
target computer environment object as the default target computer
from the xpctarget.targets class.

Examples Set the specified target collection object as the default target computer
collection. Assume that tgs represents the target object collection
environment.

tgs=xpctarget.targets;

get(tgs);

tgs.getTargetNames

tgs.makeDefault('TargetPC2')

See Also xpctarget.targets | xpctarget.targets.set (env collection
object) | xpctarget.targets.get (env collection object)

28-142

xpctarget.targets.Remove (env collection object)

Purpose Remove specific xPC Target environment object

Syntax MATLAB command line

env_collection_object.Remove('env_collection_object_name')

Description Method of xpctarget.targets objects. Remove removes an existing
xPC Target environment object from the environment collection. If you
remove the target environment object of the default target computer,
the next target environment object becomes the default target computer.
You can remove all but the last target computer, which becomes the
default target computer.

Examples Remove an xPC Target environment collection object from the system.
Assume that tgs represents the target object collection environment.

tgs=xpctarget.targets;

get(tgs);

tgs.getTargetNames

tgs.Remove('TargetPC2')

See Also xpctarget.targets | xpctarget.targets.set (env collection
object) | xpctarget.targets.get (env collection object)

28-143

xpctarget.targets.set (env collection object)

Purpose Change target object environment collection object property values

Syntax MATLAB command line

set(env_collection_object)

set(env_collection_object, 'property_name1',

'property_value1','property_name2', 'property_value2', . . .)

env_collection_object.set('property_name1',

'property_value1')

set(env_collection_object, property_name_vector,

property_value_vector)

env_collection_object.property_name = property_value

Arguments env_collection_object Name of a target environment collection
object.

'property_name' Name of a target object environment
collection property. Always use quotation
marks.

property_value Value for a target object environment
collection property. Always use quotation
marks for character strings; quotation
marks are optional for numbers.

Description set sets the values of environment properties for a collection of target
object environments. Not all properties are user writable.

Properties must be entered in pairs or, using the alternative syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector.

The environment properties for a target object collection are listed in
the following table. This table includes a description of the properties
and which properties you can change directly by assigning a value.

28-144

xpctarget.targets.set (env collection object)

Property Description Writable

DefaultTarget Contains an instance of the
default target environment object
(xpctarget.env).

No

NumTargets Contains the number of target
objects in the xPC Target system.
Note that this is not the actual
number of target computers in the
system.

No

See Also get | set | xpctarget.targets.get (env collection object)

28-145

xpctarget.xpc Class

Purpose Target object representing target application

Description Provides access to methods and properties used to start and stop the
target application, read and set parameters, monitor signals, and
retrieve status information about the target computer.

Constructor

Constructor Description

xpctarget.xpc Create target object representing target application

Methods

Method Description

xpctarget.xpc.addscope Create scopes

xpctarget.xpc.close Close serial port connecting host computer with target
computer

xpctarget.xpc.get
(target application
object)

Return target application object property values

xpctarget.xpc.getlog All or part of output logs from target object

xpctarget.xpc.getparam Value of target object parameter index

xpctarget.xpc.getparamidParameter index from parameter list

xpctarget.xpc.getparamnameBlock path and parameter name from index list

xpctarget.xpc.getscope Scope object pointing to scope defined in kernel

xpctarget.xpc.getsignalValue of target object signal index

xpctarget.xpc.getsignalidSignal index or signal property from signal list

xpctarget.xpc.getsignalidsfromlabelReturn vector of signal indices

xpctarget.xpc.getsignallabelReturn signal label

xpctarget.xpc.getsignalnameSignal name from index list

28-146

xpctarget.xpc Class

Method Description

xpctarget.xpc.getxpcpciDetermine which PCI boards are installed in target computer

xpctarget.xpc.load Download target application to target computer

xpctarget.xpc.loadparamsetRestore parameter values saved in specified file

xpctarget.xpc.reboot Reboot target computer

xpctarget.xpc.remscope Remove scope from target computer

xpctarget.xpc.saveparamsetSave current target application parameter values

xpctarget.xpc.set
(target application
object)

Change target application object property values

xpctarget.xpc.setparam Change writable target object parameters

xpctarget.xpc.start
(target application
object)

Start execution of target application on target computer

xpctarget.xpc.stop
(target application
object)

Stop execution of target application on target computer

xpctarget.xpc.targetpingTest communication between host and target computers

xpctarget.xpc.unload Remove current target application from target computer

Properties

Properties are read using xpctarget.xpc.get (target application
object). Writable properties are written using xpctarget.xpc.set
(target application object).

28-147

xpctarget.xpc Class

Property Description Writable

Application Name of the Simulink model and target
application built from that model.

No

AvgTET Average task execution time. This value is
an average of the measured CPU times,
in seconds, to run the model equations
and post outputs during each sample
interval. Task execution time is nearly
constant, with minor deviations due to
cache, memory access, interrupt latency,
and multirate model execution.

The TET includes:

• Complete I/O latency.

• Data logging (the parts that happen in
a real-time task). This includes data
captured in scopes.

• Asynchronous interruptions.

• Parameter updating latency (if
the Double buffer parameter
changes parameter is set in the xPC
Target options node of the model
Configuration Parameters dialog box).

Note that the TET is not the only
consideration in determining the
minimum achievable sample time. Other
considerations, not included in the TET,
are:

• Time required to measure TET

• Interrupt latency required to schedule
and run one step of the model

No

28-148

xpctarget.xpc Class

Property Description Writable

CommunicationTimeOut Communication timeout between host and
target computer, in seconds.

Yes

Connected Communication status between the host
computer and the target computer. Values
are 'Yes' and 'No'.

No

CPUoverload CPU status for overload. If the target
application requires more CPU time than
the sample time of the model, this value
is set from 'none' to 'detected' and the
current run is stopped. Returning this
status to 'none' requires either a faster
processor or a larger sample time.

No

ExecTime Execution time. Time, in seconds, since
your target application started running.
When the target application stops, the
total execution time is displayed.

No

LogMode Controls which data points are logged:

• Time-equidistant logging. Logs a data
point at every time interval. Set value
to 'Normal'.

• Value-equidistant logging. Logs a data
point only when an output signal from
the OutputLog changes by a specified
value (increment). Set the value to the
difference in signal values.

Yes

28-149

xpctarget.xpc Class

Property Description Writable

MaxLogSamples Maximum number of samples for each
logged signal within the circular buffers
for TimeLog, StateLog, OutputLog, and
TETLog. StateLog and OutputLog can
have one or more signals.

This value is calculated by dividing the
Signal Logging Buffer Size by the
number of logged signals. The Signal
Logging Buffer Size box is in the xPC
Target options pane of the Configuration
Parameters dialog box.

No

MaxTET Maximum task execution time.
Corresponds to the slowest time (longest
time measured), in seconds, to update
model equations and post outputs.

No

MinTET Minimum task execution time.
Corresponds to the fastest time (smallest
time measured), in seconds, to update
model equations and post outputs.

No

Mode Type of Simulink Coder code generation.
Values are 'Real-Time Singletasking',
'Real-Time Multitasking', and
'Accelerate'. The default value is
'Real-Time Singletasking'.
Even if you select 'Real-Time
Multitasking', the actual mode
can be 'Real-Time Singletasking'. This
happens if your model contains only one or
two tasks and the sample rates are equal.

No

28-150

xpctarget.xpc Class

Property Description Writable

NumLogWraps The number of times the circular
buffer wrapped. The buffer wraps each
time the number of samples exceeds
MaxLogSamples.

No

NumParameters The number of parameters from your
Simulink model that you can tune or
change.

No

NumSignals The number of signals from your Simulink
model that are available to be viewed with
a scope.

No

OutputLog Storage in the MATLAB workspace for the
output or Y-vector logged during execution
of the target application.

No

Parameters List of tunable parameters. This list is
visible only when ShowParameters is set
to 'on':

• Property value. Value of the parameter
in a Simulink block.

• Type. Data type of the parameter.
Always double.

• Size. Size of the parameter. For
example, scalar, 1-by-2 vector, or 2-by-3
matrix.

• Parameter name. Name of a parameter
in a Simulink block.

• Block name. Name of a Simulink block.

No

28-151

xpctarget.xpc Class

Property Description Writable

SampleTime Time between samples. This value equals
the step size, in seconds, for updating the
model equations and posting the outputs.
(See “User Interaction” for limitations on
target property changes to sample times.)

Yes

Scopes List of index numbers, with one index for
each scope.

No

SessionTime Time since the kernel started running on
your target computer. This is also the
elapsed time since you booted the target
computer. Values are in seconds.

No

ShowParameters Flag set to view or hide the list of
parameters from your Simulink blocks.
This list is shown when you display the
properties for a target object. Values are
'on' and 'off'.

Yes

ShowSignals Flag set to view or hide the list of signals
from your Simulink blocks. This list is
shown when you display the properties
for a target object. Values are 'on' and
'off'.

Yes

Signals List of viewable signals. This list is visible
only when ShowSignals is set to 'on'.

• Property name. S0, S1. . .

• Property value. Value of the signal.

• Block name. Name of the Simulink
block the signal is from.

No

StateLog Storage in the MATLAB workspace for the
state or x-vector logged during execution
of the target application.

No

28-152

xpctarget.xpc Class

Property Description Writable

Status Execution status of your target application.
Values are 'stopped' and 'running'.

No

StopTime Time when the target application stops
running. Values are in seconds. The
original value is set in the Solver pane of
the Configuration Parameters dialog box.

When the ExecTime reaches StopTime, the
application stops running.

Yes

TETLog Storage in the MATLAB workspace for
a vector containing task execution times
during execution of the target application.

To enable logging of the TET, you need
to select the Log Task Execution Time
check box in the xPC Target options
pane of the Configuration Parameters
dialog box.

No

TimeLog Storage in the MATLAB workspace for the
time or T-vector logged during execution of
the target application.

No

ViewMode Display either all scopes or a single scope
on the target computer. Value is 'all'
or a single scope index. This property is
active only if the environment property
TargetScope is set to enabled.

Yes

28-153

xpctarget.xpc

Purpose Create target object representing target application

Syntax MATLAB command line

target_object = xpctarget.xpc('mode', 'arg1', 'arg2')
target_object=xpctarget.xpc('target_object_name')

Arguments target_object Variable name to reference the target object

mode Optionally, enter the communication mode

Note RS-232 Host-Target communication
mode will be removed in a future release. Use
TCP/IP instead.

TCPIP Enable TCP/IP connection with
target computer.

RS232 Enable RS-232 connection with
target computer.

arg1 Optionally, enter an argument based on the
mode value:

IP
address

If mode is 'TCPIP', enter the IP
address of the target computer.

COM
port

If mode is 'RS232', enter the host
COM port.

arg2 Optionally, enter an argument based on the
mode value:

Port If mode is 'TCPIP', enter the port
number for the target computer.

28-154

xpctarget.xpc

Baud
rate

If mode is 'RS232', enter the baud
rate for the connection between the
host and target computer.

target_object_name Target object name as specified in the xPC
Target Explorer

Description Constructor of a target object (xpctarget.xpc Class). The target
object represents the target application and target computer. You make
changes to the target application by changing the target object using
methods and properties.

If you have one target computer, or if you designate a target computer
as the default one in your system, use the syntax

target_object=xpctarget.xpc

If you have multiple target computers in your system, use the following
syntax to create the additional target objects.

target_object=xpctarget.xpc('mode', 'arg1', 'arg2')

If you have a target computer object in the xPC Target Explorer, you
can use the following syntax to construct a corresponding target object
from the MATLAB Command Window.

target_object=xpctarget.xpc('target_object_name')

Examples Before you build a target application, you can check the connection
between your host and target computers by creating a target object, then
using the xpctarget.xpc.targetping method to check the connection.

tg = xpctarget.xpc
xPC Object

Connected = Yes
Application = loader

tg.targetping

28-155

xpctarget.xpc

ans =

success

If you have a second target computer for which you want to check the
connection, create a second target object. In the following example, the
connection with the second target computer is an RS-232 connection.

tg1=xpctarget.xpc('RS232','COM1','115200')

xPC Object
Connected = Yes
Application = loader

If you have an xPC Target Explorer target object, and you want to
construct a corresponding target object in the MATLAB Command
Window, use a command like the following:

target_object=xpctarget.xpc('TargetPC1')

See Also xpctarget.xpc.get (target application object) |
xpctarget.xpc.set (target application object) |
xpctarget.xpc.targetping

28-156

xpctarget.xpc.addscope

Purpose Create scopes

Syntax MATLAB command line

Create a scope and scope object without assigning to a MATLAB
variable.

addscope(target_object, scope_type, scope_number)
target_object.addscope(scope_type, scope_number)

Create a scope, scope object, and assign to a MATLAB variable

scope_object = addscope(target_object,

scope_type, scope_number)

scope_object = target_object.addscope(scope_type,

scope_number)

Target computer command line — When you are using this
command on the target computer, you can only add a target scope.

addscope
addscope scope_number

Arguments target_object Name of a target object. The default target name
is tg.

scope_type Values are 'host', 'target', or 'file'. This
argument is optional with host as the default value.

scope_number Vector of new scope indices. This argument is
optional. The next available integer in the target
object property Scopes as the default value.

If you enter a scope index for an existing scope object,
the result is an error.

Description addscope creates a scope of the specified type and updates the target
object property Scopes. This method returns a scope object vector. If

28-157

xpctarget.xpc.addscope

the result is not assigned to a variable, the scope object properties are
listed in the MATLAB window. The xPC Target product supports 10
target or host scopes, and eight file scopes, for a maximum of 28 scopes.
If you try to add a scope with the same index as an existing scope, the
result is an error.

Examples Create a scope and scope object sc1 using the method addscope. A
target scope is created on the target computer with an index of 1, and a
scope object is created on the host computer, assigned to the variable
sc1. The target object property Scopes is changed from No scopes
defined to 1.

sc1 = addscope(tg,'target',1)

or

sc1 = tg.addscope('target',1)

Create a scope with the method addscope and then create a scope object,
corresponding to this scope, using the method getscope. A target scope
is created on the target computer with an index of 1, and a scope object
is created on the host computer, but it is not assigned to a variable. The
target object property Scopes is changed from No scopes defined to 1.

addscope(tg,'target',1) or tg.addscope('target',1)
sc1 = getscope(tg,1) or sc1 = tg.getscope(1)

28-158

xpctarget.xpc.addscope

Create two scopes using a vector of scope objects scvector. Two target
scopes are created on the target computer with scope indices of 1 and 2,
and two scope objects are created on the host computer that represent
the scopes on the target computer. The target object property Scopes
is changed from No scopes defined to 1,2.

scvector = addscope(tg, 'target', [1, 2])

Create a scope and scope object sc4 of type file using the method
addscope. A file scope is created on the target computer with an index
of 4. A scope object is created on the host computer and is assigned to
the variable sc4. The target object property Scopes is changed from
No scopes defined to 4.

sc4 = addscope(tg,'file',4) or sc4 = tg.addscope('file',4)

See Also xpctarget.xpc.remscope | xpctarget.xpc.getscope

How To • “Application and Driver Scripts”

28-159

xpctarget.xpc.close

Purpose Close serial port connecting host computer with target computer

Syntax MATLAB command line

close(target_object)
target_object.close

Arguments target_object Name of a target object.

Description close closes the serial connection between the host computer and a
target computer. If you want to use the serial port for another function
without quitting the MATLAB window – for example, a modem – use
this function to close the connection.

28-160

xpctarget.xpc.get (target application object)

Purpose Return target application object property values

Syntax MATLAB command line

get(target_object, 'target_object_property')

Arguments target_object Name of a target object.

'target_object_property'Name of a target object property.

Description get gets the value of readable target object properties from a target
object.

The properties for a target object are listed in the following table. This
table includes a description of the properties and which properties you
can change directly by assigning a value.

Property Description Writable

Application Name of the Simulink model and target
application built from that model.

No

AvgTET Average task execution time. This value is
an average of the measured CPU times,
in seconds, to run the model equations
and post outputs during each sample
interval. Task execution time is nearly
constant, with minor deviations due to
cache, memory access, interrupt latency,
and multirate model execution.

The TET includes:

• Complete I/O latency.

• Data logging (the parts that happen in
a real-time task). This includes data
captured in scopes.

No

28-161

xpctarget.xpc.get (target application object)

Property Description Writable

• Asynchronous interruptions.

• Parameter updating latency (if the
Double buffer parameter changes
parameter is set in the xPC Target
options node of the Configuration
Parameters dialog box).

Note that the TET is not the only
consideration in determining the
minimum achievable sample time. Other
considerations, not included in the TET,
are:

• Time required to measure TET

• Interrupt latency required to schedule
and run one step of the model

CommunicationTimeOut Communication timeout between host and
target computer, in seconds.

Yes

Connected Communication status between the host
computer and the target computer. Values
are 'Yes' and 'No'.

No

CPUoverload CPU status for overload. If the target
application requires more CPU time than
the sample time of the model, this value
is set from 'none' to 'detected' and the
current run is stopped. Returning this
status to 'none' requires either a faster
processor or a larger sample time.

No

ExecTime Execution time. Time, in seconds, since
your target application started running.
When the target application stops, the
total execution time is displayed.

No

28-162

xpctarget.xpc.get (target application object)

Property Description Writable

LogMode Controls which data points are logged:

• Time-equidistant logging. Logs a data
point at every time interval. Set value
to 'Normal'.

• Value-equidistant logging. Logs a data
point only when an output signal from
the OutputLog changes by a specified
value (increment). Set the value to the
difference in signal values.

Yes

MaxLogSamples Maximum number of samples for each
logged signal within the circular buffers
for TimeLog, StateLog, OutputLog, and
TETLog. StateLog and OutputLog can
have one or more signals.

This value is calculated by dividing the
Signal Logging Buffer Size by the
number of logged signals. The Signal
Logging Buffer Size box is in the xPC
Target options pane of the Configuration
Parameters dialog box.

No

MaxTET Maximum task execution time.
Corresponds to the slowest time (longest
time measured), in seconds, to update
model equations and post outputs.

No

MinTET Minimum task execution time.
Corresponds to the fastest time (smallest
time measured), in seconds, to update
model equations and post outputs.

No

28-163

xpctarget.xpc.get (target application object)

Property Description Writable

Mode Type of Simulink Coder code generation.
Values are 'Real-Time Singletasking',
'Real-Time Multitasking', and
'Accelerate'. The default value is
'Real-Time Singletasking'.
Even if you select 'Real-Time
Multitasking', the actual mode
can be 'Real-Time Singletasking'. This
happens if your model contains only one or
two tasks and the sample rates are equal.

No

NumLogWraps The number of times the circular
buffer wrapped. The buffer wraps each
time the number of samples exceeds
MaxLogSamples.

No

NumParameters The number of parameters from your
Simulink model that you can tune or
change.

No

NumSignals The number of signals from your Simulink
model that are available to be viewed with
a scope.

No

OutputLog Storage in the MATLAB workspace for the
output or Y-vector logged during execution
of the target application.

No

28-164

xpctarget.xpc.get (target application object)

Property Description Writable

Parameters List of tunable parameters. This list is
visible only when ShowParameters is set
to 'on':

• Property value. Value of the parameter
in a Simulink block.

• Type. Data type of the parameter.
Always double.

• Size. Size of the parameter. For
example, scalar, 1-by-2 vector, or 2-by-3
matrix.

• Parameter name. Name of a parameter
in a Simulink block.

• Block name. Name of a Simulink block.

No

SampleTime Time between samples. This value equals
the step size, in seconds, for updating the
model equations and posting the outputs.
(See “User Interaction” for limitations on
target property changes to sample times.)

Yes

Scopes List of index numbers, with one index for
each scope.

No

SessionTime Time since the kernel started running on
your target computer. This is also the
elapsed time since you booted the target
computer. Values are in seconds.

No

ShowParameters Flag set to view or hide the list of
parameters from your Simulink blocks.
This list is shown when you display the
properties for a target object. Values are
'on' and 'off'.

Yes

28-165

xpctarget.xpc.get (target application object)

Property Description Writable

ShowSignals Flag set to view or hide the list of signals
from your Simulink blocks. This list is
shown when you display the properties
for a target object. Values are 'on' and
'off'.

Yes

Signals List of viewable signals. This list is visible
only when ShowSignals is set to 'on'.

• Property name. S0, S1. . .

• Property value. Value of the signal.

• Block name. Name of the Simulink
block the signal is from.

No

StateLog Storage in the MATLAB workspace for the
state or x-vector logged during execution
of the target application.

No

Status Execution status of your target application.
Values are 'stopped' and 'running'.

No

StopTime Time when the target application stops
running. Values are in seconds. The
original value is set in the Solver pane of
the Configuration Parameters dialog box.

When the ExecTime reaches StopTime, the
application stops running.

Yes

28-166

xpctarget.xpc.get (target application object)

Property Description Writable

TETLog Storage in the MATLAB workspace for
a vector containing task execution times
during execution of the target application.

To enable logging of the TET, you need
to select the Log Task Execution Time
check box in the xPC Target options
pane of the Configuration Parameters
dialog box.

No

TimeLog Storage in the MATLAB workspace for the
time or T-vector logged during execution of
the target application.

No

ViewMode Display either all scopes or a single scope
on the target computer. Value is 'all'
or a single scope index. This property is
active only if the environment property
TargetScope is set to enabled.

Yes

Examples List the value for the target object property StopTime. Notice that the
property name is a string, in quotation marks, and not case sensitive.

get(tg,'stoptime') or tg.get('stoptime')
ans = 0.2

See Also get | set | xpctarget.xpc.set (target application object)
| xpctarget.xpcsc.get (scope object) | xpctarget.xpc.set
(target application object)

28-167

xpctarget.xpc.getlog

Purpose All or part of output logs from target object

Syntax MATLAB command line

log = getlog(target_object, 'log_name', first_point,
number_samples, decimation)

Arguments log User-defined MATLAB variable.

'log_name' Values are TimeLog, StateLog, OutputLog, or
TETLog. This argument is required.

first_point First data point. The logs begin with 1. This
argument is optional. Default is 1.

number_samples Number of samples after the start time. This
argument is optional. Default is all points in log.

decimation 1 returns all sample points. n returns every nth
sample point. This argument is optional. Default
is 1.

Description Use this function instead of the function get when you want only part
of the data.

Examples To get the first 1000 points in a log,

Out_log = getlog(tg, 'TETLog', 1, 1000)

To get every other point in the output log and plot values,

Output_log = getlog(tg, 'TETLog', 1, 10, 2)
Time_log = getlog(tg, 'TimeLog', 1, 10, 2)
plot(Time_log, Output_log)

How To • xpctarget.xpc.get (target application object)

• “Set Configuration Parameters”

28-168

xpctarget.xpc.getparam

Purpose Value of target object parameter index

Syntax MATLAB command line

getparam(target_object, parameter_index)

Arguments target_object Name of a target object. The default
name is tg.

parameter_index Index number of the parameter.

Description getparam returns the value of the parameter associated with
parameter_index.

Examples Get the value of parameter index 5.

getparam(tg, 5)
ans = 400

28-169

xpctarget.xpc.getparamid

Purpose Parameter index from parameter list

Syntax MATLAB command line

getparamid(target_object, 'block_name', 'parameter_name')

Arguments target_object Name of a target object. The default name
is tg.

'block_name' Simulink block path without model name.

'parameter_name' Name of a parameter within a Simulink
block.

Description getparamid returns the index of a parameter in the parameter list
based on the path to the parameter name. The names must be entered
in full and are case sensitive. Note, enter for block_name the mangled
name that Simulink Coder uses for code generation.

Examples Get the parameter property for the parameter Gain in the Simulink
block Gain1, incrementally increase the gain, and pause to observe
the signal trace.

id = getparamid(tg, 'Subsystem/Gain1', 'Gain')
for i = 1 : 3

set(tg, id, i*2000);
pause(1);

end

Get the property index of a single block.

getparamid(tg, 'Gain1', 'Gain') ans = 5

See Also xpctarget.xpc.getsignalid

How To • “Application and Driver Scripts”

28-170

xpctarget.xpc.getparamid

• “Why Does the getparamid Function Return Nothing?” on page 22-2

28-171

xpctarget.xpc.getparamname

Purpose Block path and parameter name from index list

Syntax MATLAB command line

getparamname(target_object, parameter_index)

Arguments target_object Name of a target object. The default name
is tg.

parameter_index Index number of the parameter.

Description getparamname returns two argument strings, block path and parameter
name, from the index list for the specified parameter index.

Examples Get the block path and parameter name of parameter index 5.

[blockPath,parName]=getparamname(tg,5)
blockPath =
Signal Generator
parName =
Amplitude

28-172

xpctarget.xpc.getscope

Purpose Scope object pointing to scope defined in kernel

Syntax MATLAB command line

scope_object_vector = getscope(target_object, scope_number)
scope_object = target_object.getscope(scope_number)

Arguments target_object Name of a target object.

scope_number_vector Vector of existing scope indices listed in the
target object property Scopes. The vector can
have only one element.

scope_object MATLAB variable for a new scope object
vector. The vector can have only one scope
object.

Description getscope returns a scope object vector. If you try to get a nonexistent
scope, the result is an error. You can retrieve the list of existing
scopes using the method get(target_object, 'scopes') or
target_object.scopes.

Examples If your Simulink model has an xPC Target scope block, a target scope is
created at the time the target application is downloaded to the target

28-173

xpctarget.xpc.getscope

computer. To change the number of samples, you need to create a scope
object and then change the scope object property NumSamples.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
sc1.NumSample = 500

The following example gets the properties of all scopes on the target
computer and creates a vector of scope objects on the host computer. If
the target object has more than one scope, it create a vector of scope
objects.

scvector = getscope(tg)

See Also getxpcenv | xpctarget.xpc.remscope

How To • “Application and Driver Scripts”

28-174

xpctarget.xpc.getsignal

Purpose Value of target object signal index

Syntax MATLAB command line

getsignal(target_object, signal index)

Arguments target_object Name of a target object. The default name is tg.

signal_index Index number of the signal.

Description getsignal returns the value of the signal associated with
signal_index.

Examples Get the value of signal index 2.

getsignal(tg, 2)
ans = -3.3869e+006

28-175

xpctarget.xpc.getsignalid

Purpose Signal index or signal property from signal list

Syntax MATLAB command line

getsignalid(target_object, 'signal_name')
tg.getsignalid('signal_name')

Arguments target_object Name of an existing target object.

signal_name Enter the name of a signal from your Simulink
model. For blocks with a single signal, the
signal_name is equal to the block_name. For
blocks with multiple signals, the xPC Target
software appends S1, S2 . . . to the block_name.

Description getsignalid returns the index or name of a signal from the signal list,
based on the path to the signal name. The block names must be entered
in full and are case sensitive. Note, enter for block_name the mangled
name that Simulink Coder uses for code generation.

Examples Get the signal index for the single signal from the Simulink block Gain1.

getsignalid(tg, 'Gain1') or tg.getsignalid('Gain1')
ans = 6

See Also xpctarget.xpc.getparamid

How To • “Application and Driver Scripts”

• “Why Does the getparamid Function Return Nothing?” on page 22-2

28-176

xpctarget.xpc.getsignalidsfromlabel

Purpose Return vector of signal indices

Syntax MATLAB command line

getsignalidsfromlabel(target_object, signal_label)
target_object.getsignalidsfromlabel(signal_label)

Arguments target_object Name of a target object. The default name
is tg.

signal_label Signal label (from Simulink model).

Description getsignalidsfromlabel returns a vector of one or more signal indices
that are associated with the labeled signal, signal_label. This
function assumes that you have labeled the signal for which you request
the index (see the Signal name parameter of the “Signal Properties
Controls”). Note that the xPC Target software refers to Simulink signal
names as signal labels.

Examples Get the vector of signal indices for a signal labeled Gain.

>> tg.getsignalidsfromlabel('xpcoscGain')
ans =
0

See Also xpctarget.xpc.getsignallabel

28-177

xpctarget.xpc.getsignallabel

Purpose Return signal label

Syntax MATLAB command line

getsignallabel(target_object, signal_index)
target_object.getsignallabel(signal_index)

Arguments target_object Name of a target object. The default name
is tg.

signal_index Index number of the signal.

Description getsignallabel returns the signal label for the specified signal index,
signal_index. signal_label. This function assumes that you have
labeled the signal for which you request the label (see the Signal name
parameter of the “Signal Properties Controls”). Note that the xPC
Target software refers to Simulink signal names as signal labels.

Examples >> getsignallabel(tg, 0)
ans =
xpcoscGain

See Also xpctarget.xpc.getsignalidsfromlabel

28-178

xpctarget.xpc.getsignalname

Purpose Signal name from index list

Syntax MATLAB command line

getsignalname(target_object, signal_index)
target_object.getsignalname(signal_index)

Arguments target_object Name of a target object. The default name
is tg.

signal_index Index number of the signal.

Description getparamname returns one argument string, signal name, from the
index list for the specified signal index.

Examples Get the signal name of signal ID 2.

[sigName]=getsignalname(tg,2)
sigName =
Gain2

28-179

xpctarget.xpc.getxpcpci

Purpose Determine which PCI boards are installed in target computer

Syntax MATLAB command line

getxpcpci(target_object, 'type_of_boards')
getxpcpci(target_object, 'verbose')

Arguments target_object Variable name to reference the target
object.

type_of_boards Values are no arguments, 'all', and
'supported'.

verbose Argument to include the base address
register information in the PCI device
display.

Description The getxpcpci function displays, in the MATLAB window, which PCI
boards are installed in the target computer. By default, getxpcpci
displays this information for the target object, tg. If you have multiple
target computers in your system, you can call the getxpcpci function
for a particular target object, target_object.

Only devices supported by driver blocks in the xPC Target block library
are displayed. The information includes the PCI bus number, slot
number, assigned IRQ number, manufacturer name, board name, device
type, manufacturer PCI ID, base address, and the board PCI ID itself.

The following preconditions must be met before you can use this
function:

• The host-target communication link must be working. (The function
xpctargetping must return success before you can use the function
getxpcpci.)

• Either a target application is loaded or the loader is active. The
latter is used to query for resources assigned to a specific PCI device,

28-180

xpctarget.xpc.getxpcpci

which have to be provided to a driver block dialog box before the
model build process.

Examples The following example displays the installed PCI devices, not only
the devices supported by the xPC Target block library. This includes
graphics controllers, network cards, SCSI cards, and even devices that
are part of the motherboard chip set (for example, PCI-to-PCI bridges).

getxpcpci('all')

The following example displays a list of the currently supported PCI
devices in the xPC Target block library, including subvendor and
subdevice information.

getxpcpci('supported')

The following example displays a list of the currently supported PCI
devices in the xPC Target block library, including subvendor and
subdevice information and base address register contents.

getxpcpci('verbose')

When called with the 'supported' option, getxpcpci does not access
the target computer.

To display the list of PCI devices installed on the target computer, tg1,
first create a target object, tg1, for that target computer. Then, call
getxpcpci with the 'all' option. For example:

tg1=xpctarget.xpc('RS232','COM1','115200')
getxpcpci(tg1, 'all')

To return the result of a getxpcpci query in the struct pcidevs instead
of displaying it, assign the function to pcidevs. The struct pcidevs is
an array with one element for each detected PCI device. Each element
combines the information by a set of field names. The struct contains
more information compared to the displayed list. Its contents vary
according to the options you specify for the function.

28-181

xpctarget.xpc.getxpcpci

pcidevs = getxpcpci

28-182

xpctarget.xpc.load

Purpose Download target application to target computer

Syntax MATLAB command line

load(target_object,'target_application')
target_object.load('target_application')

Arguments target_object Name of an existing target object.

target_application Simulink model and target application
name.

Description Before using this function, the target computer must be booted with
the xPC Target kernel, and the target application must be built in the
current working folder on the host computer.

If an application was previously loaded, the old target application is first
unloaded before downloading the new target application. The method
load is called automatically after the Simulink Coder build process.

Note If you are running in Standalone mode, this command has no
effect. To load a new application, you must rebuild the standalone
application with the new application, then reboot the target computer
with the updated standalone application.

Examples Load the target application xpcosc represented by the target object tg.

load(tg,'xpcosc') or tg.load('xpcosc')
+tg or tg.start or start(tg)

See Also xpctarget.xpc.unload

How To • “Application and Driver Scripts”

28-183

xpctarget.xpc.loadparamset

Purpose Restore parameter values saved in specified file

Syntax MATLAB command line

loadparamset(target_object,'filename')
target_object.loadparamset('filename')

Arguments target_object Name of an existing target object.

filename Enter the name of the file that contains the saved
parameters.

Description loadparamset restores the target application parameter values saved
in the file filename. This file must be located on a local drive of the
target computer. This method assumes that you have a parameter file
from a previous run of the xpctarget.xpc.saveparamset method.

See Also xpctarget.xpc.saveparamset

28-184

xpctarget.xpc.reboot

Purpose Reboot target computer

Syntax MATLAB command line

reboot(target_object)

Target computer command line

reboot

Arguments target_object Name of an existing target object.

Description reboot reboots the target computer, and if a target boot disk is still
present, the xPC Target kernel is reloaded.

You can also use this method to reboot the target computer back to
Windows after removing the target boot disk.

Note This method might not work on some target hardware.

See Also xpctarget.xpc.load | xpctarget.xpc.unload

28-185

xpctarget.xpc.remscope

Purpose Remove scope from target computer

Syntax MATLAB command line

remscope(target_object, scope_number_vector)
target_object.remscope(scope_number_vector)
remscope(target_object)
target_object.remscope

Target computer command line

remscope scope_number
remscope 'all'

Arguments target_object Name of a target object. The default name is
tg.

scope_number_vectorVector of existing scope indices listed in the
target object property Scopes.

scope_number Single scope index.

Description If a scope index is not given, the method remscope deletes all scopes on
the target computer. The method remscope has no return value. The
scope object representing the scope on the host computer is not deleted.

28-186

xpctarget.xpc.remscope

Note that you can only permanently remove scopes that are added with
the method addscope. This is a scope that is outside a model. If you
remove a scope that has been added through a scope block (the scope
block is inside the model), a subsequent run of that model creates the
scope again.

Examples Remove a single scope.

remscope(tg,1)

or

tg.remscope(1)

Remove two scopes.

remscope(tg,[1 2])

or

tg.remscope([1,2])

Remove all scopes.

remscope(tg)

or

tg.remscope

See Also xpctarget.xpc.addscope | xpctarget.xpc.getscope

How To • “Application and Driver Scripts”

28-187

xpctarget.xpc.saveparamset

Purpose Save current target application parameter values

Syntax MATLAB command line

saveparamset(target_object,'filename')
target_object.saveparamset('filename')

Arguments target_object Name of an existing target object.

filename Enter the name of the file to contain the saved
parameters.

Description saveparamset saves the target application parameter values in the
file filename. This method saves the file on a local drive of the target
computer (C:\ by default). You can later reload these parameters with
the xpctarget.xpc.loadparamset function.

You might want to save target application parameter values if you
change these parameter values while the application is running in
real time. Saving these values enables you to easily recreate target
application parameter values from a number of application runs.

See Also xpctarget.xpc.loadparamset

28-188

xpctarget.xpc.set (target application object)

Purpose Change target application object property values

Syntax MATLAB command line

set(target_object)
set(target_object, 'property_name1', 'property_value1',
'property_name2', 'property_value2', . . .)
target_object.set('property_name1', 'property_value1')
set(target_object, property_name_vector,
property_value_vector)
target_object.property_name = property_value

Target computer command line - Commands are limited to the
target object properties stoptime, sampletime, and parameters.

parameter_name = parameter_value
stoptime = floating_point_number
sampletime = floating_point_number

Arguments target_object Name of a target object.

'property_name' Name of a target object property. Always use
quotation marks.

property_value Value for a target object property. Always
use quotation marks for character strings;
quotation marks are optional for numbers.

Description set sets the properties of the target object. Not all properties are user
writable.

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector. The writable properties for a target object

28-189

xpctarget.xpc.set (target application object)

are listed in the following table. This table includes a description of
the properties:

Property Description Writable

CommunicationTimeOut Communication timeout
between host and target
computer, in seconds.

Yes

LogMode Controls which data points
are logged:

• Time-equidistant
logging. Logs a data
point at every time
interval. Set value to
'Normal'.

• Value-equidistant
logging. Logs a data
point only when an
output signal from the
OutputLog changes
by a specified value
(increment). Set the
value to the difference
in signal values.

Yes

SampleTime Time between samples.
This value equals the
step size, in seconds,
for updating the model
equations and posting
the outputs. See “User
Interaction” for limitations
on target property changes
to sample times.

Yes

28-190

xpctarget.xpc.set (target application object)

Property Description Writable

ShowParameters Flag set to view or hide
the list of parameters from
your Simulink blocks. This
list is shown when you
display the properties for
a target object. Values are
'on' and 'off'.

Yes

ShowSignals Flag set to view or hide the
list of signals from your
Simulink blocks. This list
is shown when you display
the properties for a target
object. Values are 'on'
and 'off'.

Yes

StopTime Time when the target
application stops running.
Values are in seconds.
The original value is set
in the Solver pane of the
Configuration Parameters
dialog box.

When the ExecTime
reaches StopTime, the
application stops running.

Yes

ViewMode Display either all scopes or
a single scope on the target
computer. Value is 'all'
or a single scope index.
This property is active
only if the environment
property TargetScope is
set to enabled.

Yes

28-191

xpctarget.xpc.set (target application object)

The function set typically does not return a value. However, if called
with an explicit return argument, for example, a = set(target_object,
property_name, property_value), it returns the value of the
properties after the indicated settings have been made.

Examples Get a list of writable properties for a scope object.

set(tg)
ans =

StopTime: {}
SampleTime: {}

ViewMode: {}
LogMode: {}

ShowParameters: {}
ShowSignals: {}

Change the property ShowSignals to on.

tg.set('showsignals', 'on') or set(tg, 'showsignals', 'on')

As an alternative to the method set, use the target object property
ShowSignals. In the MATLAB window, type

tg.showsignals ='on'

See Also get | set | xpctarget.xpc.get (target application object) |
xpctarget.xpcsc.get (scope object) | xpctarget.xpcsc.set
(scope object)

How To • “Application and Driver Scripts”

28-192

xpctarget.xpc.setparam

Purpose Change writable target object parameters

Syntax MATLAB command line

setparam(target_object, parameter_index, parameter_value)

Arguments target_object Name of an existing target object. The default
name is tg.

parameter_index Index number of the parameter.

parameter_value Value for a target object parameter.

Description Method of a target object. Set the value of the target parameter. This
method returns a structure that stores the parameter index, previous
parameter values, and new parameter values in the following fields:

• parIndexVec

• OldValues

• NewValues

Examples Set the value of parameter index 5 to 100.

setparam(tg, 5, 100)
ans =
parIndexVec: 5
OldValues: 400
NewValues: 100

Simultaneously set values for multiple parameters. Use the cell array
format to specify new parameter values.

setparam(tg, [1 5],{10,100})
ans =
parIndexVec: [1 5]
OldValues: {[2] [4]}

28-193

xpctarget.xpc.setparam

NewValues: {[10] [100]}

28-194

xpctarget.xpc.start (target application object)

Purpose Start execution of target application on target computer

Syntax MATLAB command line

start(target_object)
target_object.start
+target_object

Target computer command line

start

Arguments target_object Name of a target object. The default name is tg.

Description Method of both target and scope objects. Starts execution of the
target application represented by the target object. Before using this
method, the target application must be created and loaded on the target
computer. If a target application is running, this command has no effect.

Examples Start the target application represented by the target object tg.

+tg
tg.start
start(tg)

See Also xpctarget.xpc.stop (target application object)
| xpctarget.xpc.load | xpctarget.xpc.unload |
xpctarget.xpcsc.stop (scope object)

28-195

xpctarget.xpc.stop (target application object)

Purpose Stop execution of target application on target computer

Syntax MATLAB command line

stop(target_object)
target_object.stop
-target_object

Target computer command line

stop

Arguments target_object Name of a target object.

Description Stops execution of the target application represented by the target
object. If the target application is stopped, this command has no effect.

Examples Stop the target application represented by the target object tg.

stop(tg) or tg.stop or -tg

See Also xpctarget.xpc.start (target application object) |
xpctarget.xpcsc.stop (scope object) | xpctarget.xpcsc.start
(scope object)

28-196

xpctarget.xpc.targetping

Purpose Test communication between host and target computers

Syntax MATLAB command line

targetping(target_object)
target_object.targetping

Arguments target_object Name of a target object.

Description Method of a target object. Use this method to ping a target computer
from the host computer. This method returns success if the xPC Target
kernel is loaded and running and communication is working between
host and target, otherwise it returns failed.

This function works with both RS-232 and TCP/IP communication.

Note RS-232 Host-Target communication mode will be removed in a
future release. Use TCP/IP instead.

Examples Ping the communication between the host and the target object tg.

targetping(tg) or tg.targetping

See Also xpctarget.xpc

28-197

xpctarget.xpc.unload

Purpose Remove current target application from target computer

Syntax MATLAB command line

unload(target_object)
target_object.unload

Arguments target_object Name of a target object that represents a target
application.

Description Method of a target object. The kernel goes into loader mode and is ready
to download new target application from the host computer.

Note If you are running in StandAlone mode, this command has no
effect. To unload and reload a new application, you must rebuild the
standalone application with the new application, then reboot the target
computer with the updated standalone application.

Examples Unload the target application represented by the target object tg.

unload(tg) or tg.unload

See Also xpctarget.xpc.load | xpctarget.xpc.reboot

28-198

xpctarget.xpcfs Class

Purpose Control and access properties of file scopes

Description The scope gets a data package from the kernel and stores the data in
a file in the target computer file system. Depending on the setting of
WriteMode, the file size is or is not continuously updated. You can then
transfer the data to another computer for examination or plotting.

Methods

These methods are inherited from xpctarget.xpcsc Class.

Method Description

xpctarget.xpcsc.addsignalAdd signals to scope represented by scope object

xpctarget.xpcsc.get
(scope object)

Return property values for scope objects

xpctarget.xpcsc.remsignalRemove signals from scope represented by scope object

xpctarget.xpcsc.set
(scope object)

Change property values for scope objects

xpctarget.xpcsc.start
(scope object)

Start execution of scope on target computer

xpctarget.xpcsc.stop
(scope object)

Stop execution of scope on target computer

xpctarget.xpcsc.triggerSoftware-trigger start of data acquisition for scope(s)

Properties

These properties are inherited from xpctarget.xpcsc Class.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

28-199

xpctarget.xpcfs Class

Property Description Writable

NumPrePostSamples For host or target scopes, this parameter is the
number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

28-200

xpctarget.xpcfs Class

Property Description Writable

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

28-201

xpctarget.xpcfs Class

Property Description Writable

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Yes

These properties are specific to class xpcfs.

Property Description Writeable

AutoRestart Values are 'on' and 'off'.

For file scopes, enable the file scope
to collect data up to the number of
samples (NumSamples), then start
over again, appending the new data
to the end of the signal data file.
Clear the AutoRestart check box
to have the file scope collect data up
to Number of samples, then stop.

If the named signal data file
already exists when you start the
target application, the software
overwrites the old data with the
new signal data.

To use the DynamicFileName
property, set AutoRestart to 'on'
first.

No

28-202

xpctarget.xpcfs Class

Property Description Writeable

For host or target scopes, this
parameter has no effect.

DynamicFileNameValues are 'on' and 'off'. By
default, the value is 'off'.

Enable the ability to dynamically
create multiple log files for file
scopes.

To use DynamicFileName, set
AutoRestart to 'on' first. When
you enable DynamicFileName,
configure Filename to create
incrementally numbered file names
for the multiple log files. Failure to
do so causes an error when you try
to start the scope.

You can enable the creation of up to
99999999 files (<%%%%%%%%>.dat).
The length of a file name, including
the specifier, cannot exceed eight
characters.

For host or target scopes, this
parameter has no effect.

Yes

28-203

xpctarget.xpcfs Class

Property Description Writeable

Filename Provide a name for the file to
contain the signal data. By
default, the target computer writes
the signal data to a file named
C:\data.dat for scope blocks.
Note that for file scopes created
through the MATLAB interface,
there is no name initially assigned
to FileName. After you start the
scope, the software assigns a name
for the file to acquire the signal
data. This name typically consists
of the scope object name, ScopeId,
and the beginning letters of the
first signal added to the scope.

If you set DynamicFileName
and AutoRestart to 'on',
configure Filename to dynamically
increment. Use a base file name,
an underscore (_), and a < >
specifier. Within the specifier,
enter one to eight % symbols. Each
symbol % represents a decimal
location in the file name. The
specifier can appear anywhere
in the file name. For example,
the following value for Filename,
C:\work\file_<%%%>.dat creates
file names with the following
pattern:

file_001.dat
file_002.dat
file_003.dat

No

28-204

xpctarget.xpcfs Class

Property Description Writeable

The last file name of this series will
be file_999.dat. If the function
is still logging data when the last
file name reaches its maximum
size, the function starts from the
beginning and overwrites the first
file name in the series. If you do
not retrieve the data from existing
files before they are overwritten,
the data is lost.

For host or target scopes, this
parameter has no effect.

MaxWriteFileSizeProvide the maximum size of
Filename, in bytes. This value
must be a multiple of WriteSize.
Default is 536870912.

When the size of a log file reaches
MaxWriteFileSize, the software
creates a subsequently numbered
file name, and continues logging
data to that file, up until the
highest log file number you have
specified. If the software cannot
create any additional log files, it
overwrites the first log file.

For host or target scopes, this
parameter has no effect.

Yes

28-205

xpctarget.xpcfs Class

Property Description Writeable

Mode

Note The Mode property will be
removed in a future release.

• For target scopes, use
DisplayMode.

• For file scopes, use WriteMode.

• For host scopes, this parameter
has no effect.

Yes

WriteMode For file scopes, specify when a
file allocation table (FAT) entry
is updated. Values are 'Lazy'
or 'Commit'. Both modes write
the signal data to the file. With
'Commit' mode, each file write
operation simultaneously updates
the FAT entry for the file. This
mode is slower, but the file system
always knows the actual file size.
With 'Lazy' mode, the FAT entry
is updated only when the file is
closed and not during each file
write operation. This mode is
faster, but if the system crashes
before the file is closed, the file
system might not know the actual
file size (the file contents, however,
will be intact).

Yes

28-206

xpctarget.xpcfs Class

Property Description Writeable

For host or target scopes, this
parameter has no effect.

WriteSize Enter the block size, in bytes, of
the data chunks. This parameter
specifies that a memory buffer,
of length number of samples
(NumSamples), collect data in
multiples of WriteSize. By default,
this parameter is 512 bytes, which
is the typical disk sector size. Using
a block size that is the same as the
disk sector size provides optimal
performance.

If you experience a system crash,
you can expect to lose an amount of
data the size of WriteSize.

For host or target scopes, this
parameter has no effect.

Yes

28-207

xpctarget.xpcsc.addsignal

Purpose Add signals to scope represented by scope object

Syntax MATLAB command line

addsignal(scope_object_vector, signal_index_vector)
scope_object_vector.addsignal(signal_index_vector)

Target command line

addsignal scope_index = signal_index, signal_index, . . .

Arguments scope_object_vector Name of a single scope object or the name
of a vector of scope objects.

signal_index_vector For one signal, use a single number. For
two or more signals, enclose numbers in
brackets and separate with commas.

scope_index Single scope index.

Description addsignal adds signals to a scope object. The signals must be specified
by their indices, which you can retrieve using the target object method
getsignalid. If the scope_object_vector has two or more scope
objects, the same signals are assigned to each scope.

Note You must stop the scope before you can add a signal to it.

Examples Add signals 0 and 1 from the target object tg to the scope object sc1.
The signals are added to the scope, and the scope object property
Signals is updated to include the added signals.

sc1 = getscope(tg,1)
addsignal(sc1,[0,1]) or sc1.addsignal([0,1])

28-208

xpctarget.xpcsc.addsignal

Display a list of properties and values for the scope object sc1 with the
property Signals, as shown below.

sc1.Signals
Signals = 1 : Signal Generator

0 : Integrator1

Another way to add signals without using the method addsignal is to
use the scope object method set.

set(sc1,'Signals', [0,1]) or sc1.set('signals',[0,1]

Or, to directly assign signal values to the scope object property Signals,

sc1.signals = [0,1]

See Also xpctarget.xpcsc.remsignal | xpctarget.xpcsc.set (scope
object) | xpctarget.xpc.addscope | xpctarget.xpc.getsignalid

28-209

xpctarget.xpcsc.get (scope object)

Purpose Return property values for scope objects

Syntax MATLAB command line

get(scope_object_vector)
get(scope_object_vector, 'scope_object_property')
get(scope_object_vector, scope_object_property_vector)

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope or name of a vector
of scope objects.

scope_object_property Name of a scope object property.

Description get gets the value of readable scope object properties from a scope object
or the same property from each scope object in a vector of scope objects.
Scope object properties let you select signals to acquire, set triggering
modes, and access signal information from the target application. You
can view and change these properties using scope object methods.

The properties for a scope object are listed in the following table. This
table includes descriptions of the properties and the properties you can
change directly by assigning a value.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

AutoRestart Values are 'on' and 'off'.

For file scopes, enable the file scope to collect data
up to the number of samples (NumSamples), then
start over again, appending the new data to the
end of the signal data file. Clear the AutoRestart
check box to have the file scope collect data up to
Number of samples, then stop.

No

28-210

xpctarget.xpcsc.get (scope object)

Property Description Writable

If the named signal data file already exists when
you start the target application, the software
overwrites the old data with the new signal data.

For host or target scopes, this parameter has no
effect.

To use the DynamicFileName property, set
AutoRestart to 'on' first.

Data Contains the output data for a single data package
from a scope.

For target or file scopes, this parameter has no
effect.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

DisplayMode For target scopes, indicate how a scope displays
the signals. Values are 'Numerical', 'Redraw'
(default), 'Sliding', and 'Rolling'.

For host or file scopes, this parameter has no
effect.
.

Yes

DynamicFileName Values are 'on' and 'off'. By default, the value
is 'off'.

Enable the ability to dynamically create multiple
log files for file scopes.

To use DynamicFileName, set AutoRestart to
'on' first. When you enable DynamicFileName,
configure Filename to create incrementally
numbered file names for the multiple log files.
Failure to do so causes an error when you try to
start the scope.

Yes

28-211

xpctarget.xpcsc.get (scope object)

Property Description Writable

You can enable the creation of up to 99999999
files (<%%%%%%%%>.dat). The length of a file
name, including the specifier, cannot exceed eight
characters.

For host or file scopes, this parameter has no
effect.

Filename Provide a name for the file to contain the signal
data. By default, the target computer writes the
signal data to a file named C:\data.dat for scope
blocks. Note that for file scopes created through
the MATLAB interface, there is no name initially
assigned to FileName. After you start the scope,
the software assigns a name for the file to acquire
the signal data. This name typically consists of
the scope object name, ScopeId, and the beginning
letters of the first signal added to the scope.

If you set DynamicFileName and AutoRestart
to 'on', configure Filename to dynamically
increment. Use a base file name, an underscore
(_), and a < > specifier. Within the specifier,
enter one to eight % symbols. Each symbol %
represents a decimal location in the file name.
The specifier can appear anywhere in the file
name. For example, the following value for
Filename, C:\work\file_<%%%>.dat creates file
names with the following pattern:

file_001.dat
file_002.dat
file_003.dat

The last file name of this series will be
file_999.dat. If the function is still logging data
when the last file name reaches its maximum

No

28-212

xpctarget.xpcsc.get (scope object)

Property Description Writable

size, the function starts from the beginning and
overwrites the first file name in the series. If you
do not retrieve the data from existing files before
they are overwritten, the data is lost.

For host or target scopes, this parameter has no
effect.

MaxWriteFileSize Provide the maximum size of Filename, in bytes.
This value must be a multiple of WriteSize.
Default is 536870912.

When the size of a log file reaches
MaxWriteFileSize, the software creates a
subsequently numbered file name, and continues
logging data to that file, up until the highest log
file number you have specified. If the software
cannot create any additional log files, it overwrites
the first log file.

Yes

Grid Values are 'on' and 'off'.

For host or file scopes, this parameter has no
effect.

Yes

Mode

Note The Mode property will be removed in a
future release.

• For target scopes, use DisplayMode.

• For file scopes, use WriteMode.

• For host scopes, this parameter has no effect.

Yes

28-213

xpctarget.xpcsc.get (scope object)

Property Description Writable

NumPrePostSamples For host or target scopes, this parameter is the
number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

28-214

xpctarget.xpcsc.get (scope object)

Property Description Writable

Time Contains the time data for a single data package
from a scope.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

28-215

xpctarget.xpcsc.get (scope object)

Property Description Writable

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Yes

WriteMode For file scopes, specify when a file allocation
table (FAT) entry is updated. Values are 'Lazy'
or 'Commit'. Both modes write the signal data
to the file. With 'Commit' mode, each file write
operation simultaneously updates the FAT entry
for the file. This mode is slower, but the file
system always knows the actual file size. With
'Lazy' mode, the FAT entry is updated only
when the file is closed and not during each file
write operation. This mode is faster, but if the
system crashes before the file is closed, the file
system might not know the actual file size (the
file contents, however, will be intact).

For host or target scopes, this parameter has no
effect.

Yes

28-216

xpctarget.xpcsc.get (scope object)

Property Description Writable

WriteSize Enter the block size, in bytes, of the data chunks.
This parameter specifies that a memory buffer, of
length number of samples (NumSamples), collect
data in multiples of WriteSize. By default, this
parameter is 512 bytes, which is the typical disk
sector size. Using a block size that is the same as
the disk sector size provides optimal performance.

If you experience a system crash, you can expect
to lose an amount of data the size of WriteSize.

For host or target scopes, this parameter has no
effect.

Yes

YLimit Minimum and maximum y-axis values. This
property can be set to 'auto'.

For host or file scopes, this parameter has no
effect.

Yes

Examples List all the readable properties, along with their current values. This
is given in the form of a structure whose field names are the property
names and whose field values are property values.

get(sc)

List the value for the scope object property Type. Notice that the
property name is a string, in quotation marks, and is not case sensitive.

get(sc,'type')
ans = Target

See Also get | set | xpctarget.xpcsc.set (scope object) |
xpctarget.xpc.set (target application object)

28-217

xpctarget.xpcsc Class

Purpose Base class for all scope classes

Description This is the base class for the scope classes, xpctarget.xpcfs Class,
xpctarget.xpcschost Class, and xpctarget.xpcsctg Class. All
methods and properties are inherited by the derived classes. When a
mixture of derived classes are stored in a scope collection, only the base
class methods and properties are available. All scope class constructors
are Private and are not intended to be called from the MATLAB
prompt.

A scope acquires data from the target application and displays that
data on the target computer, uploads the data to the host computer, or
stores that data in a file in the target computer file system. All target,
host, or file scopes run on the target computer.

Methods

These methods are inherited by the derived classes.

Method Description

xpctarget.xpcsc.addsignalAdd signals to scope represented by scope object

xpctarget.xpcsc.get
(scope object)

Return property values for scope objects

xpctarget.xpcsc.remsignalRemove signals from scope represented by scope object

xpctarget.xpcsc.set
(scope object)

Change property values for scope objects

xpctarget.xpcsc.start
(scope object)

Start execution of scope on target computer

xpctarget.xpcsc.stop
(scope object)

Stop execution of scope on target computer

xpctarget.xpcsc.triggerSoftware trigger start of data acquisition for scope(s)

Properties

These properties are inherited by the derived classes.

28-218

xpctarget.xpcsc Class

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

NumPrePostSamples For host or target scopes, this parameter is the
number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

28-219

xpctarget.xpcsc Class

Property Description Writable

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

28-220

xpctarget.xpcsc Class

Property Description Writable

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Yes

28-221

xpctarget.xpcsc.remsignal

Purpose Remove signals from scope represented by scope object

Syntax MATLAB command line

remsignal(scope_object)
remsignal(scope_object, signal_index_vector)
scope_object.remsignal(signal_index_vector)

Target command line

remsignal scope_index = signal_index, signal_index, . . .

Arguments scope_object MATLAB object created with the target object
method addscope or getscope.

signal_index_vector Index numbers from the scope object property
Signals. This argument is optional, and if it
is left out all signals are removed.

signal_index Single signal index.

Description remsignal removes signals from a scope object. The signals must be
specified by their indices, which you can retrieve using the target object
method getsignalid. If the scope_index_vector has two or more
scope objects, the same signals are removed from each scope. The
argument signal_index is optional; if it is left out, all signals are
removed.

Note You must stop the scope before you can remove a signal from it.

Examples Remove signals 0 and 1 from the scope represented by the scope object
sc1.

sc1.get('signals')
ans= 0 1

28-222

xpctarget.xpcsc.remsignal

Remove signals from the scope on the target computer with the scope
object property Signals updated.

remsignal(sc1,[0,1])

or

sc1.remsignal([0,1])

See Also xpctarget.xpcsc.remsignal | xpctarget.xpc.getsignalid

28-223

xpctarget.xpcsc.set (scope object)

Purpose Change property values for scope objects

Syntax MATLAB command line

set(scope_object_vector)
set(scope_object_vector, property_name1, property_value1,
property_name2, property_value2, . . .)
scope_object_vector.set('property_name1', property_value1,
. . .)
set(scope_object, 'property_name', property_value, . . .)

Arguments scope_object Name of a scope object or a vector of scope objects.

'property_name'Name of a scope object property. Always use
quotation marks.

property_value Value for a scope object property. Always use
quotation marks for character strings; quotation
marks are optional for numbers.

Description Method for scope objects. Sets the properties of the scope object. Not
all properties are user writable. Scope object properties let you select
signals to acquire, set triggering modes, and access signal information
from the target application. You can view and change these properties
using scope object methods.

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector.

The function set typically does not return a value. However,
if called with an explicit return argument, for example, a =
set(target_object, property_name, property_value), it returns
the values of the properties after the indicated settings have been made.

28-224

xpctarget.xpcsc.set (scope object)

The properties for a scope object are listed in the following table. This
table includes descriptions of the properties and the properties you can
change directly by assigning a value.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

AutoRestart Values are 'on' and 'off'.

For file scopes, enable the file scope to collect data
up to the number of samples (NumSamples), then
start over again, appending the new data to the
end of the signal data file. Clear the AutoRestart
check box to have the file scope collect data up to
Number of samples, then stop.

If the named signal data file already exists when
you start the target application, the software
overwrites the old data with the new signal data.

For host or target scopes, this parameter has no
effect.

To use the DynamicFileName property, set
AutoRestart to 'on' first.

No

Data Contains the output data for a single data package
from a scope.

For target or file scopes, this parameter has no
effect.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

28-225

xpctarget.xpcsc.set (scope object)

Property Description Writable

DisplayMode For target scopes, indicate how a scope displays
the signals. Values are 'Numerical', 'Redraw'
(default), 'Sliding', and 'Rolling'.

For host or file scopes, this parameter has no
effect.
.

Yes

DynamicFileName Values are 'on' and 'off'. By default, the value
is 'off'.

Enable the ability to dynamically create multiple
log files for file scopes.

To use DynamicFileName, set AutoRestart to
'on' first. When you enable DynamicFileName,
configure Filename to create incrementally
numbered file names for the multiple log files.
Failure to do so causes an error when you try to
start the scope.

You can enable the creation of up to 99999999
files (<%%%%%%%%>.dat). The length of a file
name, including the specifier, cannot exceed eight
characters.

For host or file scopes, this parameter has no
effect.

Yes

28-226

xpctarget.xpcsc.set (scope object)

Property Description Writable

Filename Provide a name for the file to contain the signal
data. By default, the target computer writes the
signal data to a file named C:\data.dat for scope
blocks. Note that for file scopes created through
the MATLAB interface, there is no name initially
assigned to FileName. After you start the scope,
the software assigns a name for the file to acquire
the signal data. This name typically consists of
the scope object name, ScopeId, and the beginning
letters of the first signal added to the scope.

If you set DynamicFileName and AutoRestart
to 'on', configure Filename to dynamically
increment. Use a base file name, an underscore
(_), and a < > specifier. Within the specifier,
enter one to eight % symbols. Each symbol %
represents a decimal location in the file name.
The specifier can appear anywhere in the file
name. For example, the following value for
Filename, C:\work\file_<%%%>.dat creates file
names with the following pattern:

file_001.dat
file_002.dat
file_003.dat

The last file name of this series will be
file_999.dat. If the function is still logging data
when the last file name reaches its maximum
size, the function starts from the beginning and
overwrites the first file name in the series. If you
do not retrieve the data from existing files before
they are overwritten, the data is lost.

For host or target scopes, this parameter has no
effect.

No

28-227

xpctarget.xpcsc.set (scope object)

Property Description Writable

MaxWriteFileSize Provide the maximum size of Filename, in bytes.
This value must be a multiple of WriteSize.
Default is 536870912.

When the size of a log file reaches
MaxWriteFileSize, the software creates a
subsequently numbered file name, and continues
logging data to that file, up until the highest log
file number you have specified. If the software
cannot create any additional log files, it overwrites
the first log file.

Yes

Grid Values are 'on' and 'off'.

For host or file scopes, this parameter has no
effect.

Yes

Mode

Note The Mode property will be removed in a
future release.

• For target scopes, use DisplayMode.

• For file scopes, use WriteMode.

• For host scopes, this parameter has no effect.

Yes

NumPrePostSamples For host or target scopes, this parameter is the
number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

28-228

xpctarget.xpcsc.set (scope object)

Property Description Writable

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

Time Contains the time data for a single data package
from a scope.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

28-229

xpctarget.xpcsc.set (scope object)

Property Description Writable

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

28-230

xpctarget.xpcsc.set (scope object)

Property Description Writable

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Yes

WriteMode For file scopes, specify when a file allocation
table (FAT) entry is updated. Values are 'Lazy'
or 'Commit'. Both modes write the signal data
to the file. With 'Commit' mode, each file write
operation simultaneously updates the FAT entry
for the file. This mode is slower, but the file
system always knows the actual file size. With
'Lazy' mode, the FAT entry is updated only
when the file is closed and not during each file
write operation. This mode is faster, but if the
system crashes before the file is closed, the file
system might not know the actual file size (the
file contents, however, will be intact).

For host or target scopes, this parameter has no
effect.
.

Yes

WriteSize Enter the block size, in bytes, of the data chunks.
This parameter specifies that a memory buffer, of
length number of samples (NumSamples), collect
data in multiples of WriteSize. By default, this
parameter is 512 bytes, which is the typical disk
sector size. Using a block size that is the same as
the disk sector size provides optimal performance.

If you experience a system crash, you can expect
to lose an amount of data the size of WriteSize.

For host or target scopes, this parameter has no
effect.

Yes

YLimit Minimum and maximum y-axis values. This
property can be set to 'auto'.

Yes

28-231

xpctarget.xpcsc.set (scope object)

Property Description Writable

For host or file scopes, this parameter has no
effect.

Examples Get a list of writable properties for a scope object.

sc1 = getscope(tg,1)
set(sc1)
ans=

NumSamples: {}
Decimation: {}

TriggerMode: {5x1 cell}
TriggerSignal: {}
TriggerLevel: {}
TriggerSlope: {4x1 cell}
TriggerScope: {}

TriggerSample: {}
Signals: {}

NumPrePostSamples: {}
Mode: {5x1 cell}

YLimit: {}
Grid: {}

The property value for the scope object sc1 is changed to on:

sc1.set('grid', 'on') or set(sc1, 'grid', 'on')

See Also get | set | xpctarget.xpcsc.get (scope object) |
xpctarget.xpc.set (target application object) |
xpctarget.xpc.get (target application object)

28-232

xpctarget.xpcsc.start (scope object)

Purpose Start execution of scope on target computer

Syntax MATLAB command line

start(scope_object_vector)
scope_object_vector.start
+scope_object_vector
start(getscope((target_object, signal_index_vector))

Target computer command line

startscope scope_index
startscope 'all'

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope object, name of
vector of scope objects, list of scope object
names in vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope
indices in vector form.

scope_index Single scope index.

Description Method for a scope object. Starts a scope on the target computer
represented by a scope object on the host computer. This method might
not start data acquisition, which depends on the trigger settings. Before
using this method, you must create a scope. To create a scope, use the
target object method addscope or add xPC Target scope blocks to your
Simulink model.

28-233

xpctarget.xpcsc.start (scope object)

Examples Start one scope with the scope object sc1.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
start(sc1) or sc1.start or +sc1

or type

start(getscope(tg,1))

Start two scopes.

somescopes = getscope(tg,[1,2]) or somescopes=
tg.getscope([1,2])
start(somescopes) or somescopes.start

or type

sc1 = getscope(tg,1) or sc1 =tg.getscope(1)
sc2 = getscope(tg,2) or sc2 = tg.getscope(2)
start([sc1,sc2])

or type

start(getscope(tg,[1,2])

Start all scopes:

allscopes = getscope(tg) or allscopes = tg.getscope
start(allscopes) or allscopes.start or +allscopes

or type

start(getscope(tg)) or start(tg.getscope)

See Also xpctarget.xpc.getscope | xpctarget.xpc.stop (target
application object) | xpctarget.xpcsc.stop (scope object)

28-234

xpctarget.xpcsc.stop (scope object)

Purpose Stop execution of scope on target computer

Syntax MATLAB command line

stop(scope_object_vector)
scope_object.stop
-scope_object
stop(getscope(target_object, signal_index_vector))

Target computer command line

stopscope scope_index
stopscope 'all'

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope object, name of
vector of scope objects, list of scope object
names in a vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope
indices in vector form.

scope_index Single scope index.

Description Method for scope objects. Stops the scopes represented by the scope
objects.

Examples Stop one scope represented by the scope object sc1.

stop(sc1) or sc1.stop or -sc1

Stop all scopes with a scope object vector allscopes created with the
command

28-235

xpctarget.xpcsc.stop (scope object)

allscopes = getscope(tg) or allscopes = tg.getscope.
stop(allscopes) or allscopes.stop or -allscopes

or type

stop(getscope(tg)) or stop(tg.getscope)

See Also xpctarget.xpc.getscope | xpctarget.xpc.stop (target
application object) | xpctarget.xpc.start (target application
object) | xpctarget.xpcsc.start (scope object)

28-236

xpctarget.xpcsc.trigger

Purpose Software-trigger start of data acquisition for scope(s)

Syntax MATLAB command line

trigger(scope_object_vector) or scope_object_vector.trigger

Arguments scope_object_vector Name of a single scope object, name of a
vector of scope objects, list of scope object
names in a vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

Description Method for a scope object. If the scope object property TriggerMode has
a value of 'software', this function triggers the scope represented by
the scope object to acquire the number of data points in the scope object
property NumSamples.

Note that only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

Examples Set a single scope to software trigger, trigger the acquisition of one set
of samples, and plot data.

sc1 = tg.addscope('host',1) or sc1=addscope(tg,'host',1)
sc1.triggermode = 'software'
tg.start, or start(tg), or +tg
sc1.start or start(sc1) or +sc1
sc1.trigger or trigger(sc1)
plot(sc1.time, sc1.data)
sc1.stop or stop(sc1) or -sc1
tg.stop or stop(tg) or -tg1

Set all scopes to software trigger and trigger to start.

allscopes = tg.getscopes

28-237

xpctarget.xpcsc.trigger

allscopes.triggermode = 'software'
allscopes.start or start(allscopes) or +allscopes
allscopes.trigger or trigger(allscopes)

28-238

xpctarget.xpcschost Class

Purpose Control and access properties of host scopes

Description The scope gets a data package from the kernel, waits for an upload
command from the host computer, and uploads the data to the host.
The host computer displays the data using a scope viewer or other
MATLAB functions.

Methods

These methods are inherited from xpctarget.xpcsc Class.

Method Description

xpctarget.xpcsc.addsignalAdd signals to scope represented by scope object

xpctarget.xpcsc.get
(scope object)

Return property values for scope objects

xpctarget.xpcsc.remsignalRemove signals from scope represented by scope object

xpctarget.xpcsc.set
(scope object)

Change property values for scope objects

xpctarget.xpcsc.start
(scope object)

Start execution of scope on target computer

xpctarget.xpcsc.stop
(scope object)

Stop execution of scope on target computer

xpctarget.xpcsc.triggerSoftware-trigger start of data acquisition for scope(s)

Properties

These properties are inherited from xpctarget.xpcsc Class.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

28-239

xpctarget.xpcschost Class

Property Description Writable

NumPrePostSamples For host or target scopes, this parameter is the
number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

28-240

xpctarget.xpcschost Class

Property Description Writable

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

28-241

xpctarget.xpcschost Class

Property Description Writable

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Yes

These properties are specific to class xpcschost.

Property Description Writeable

Data Contains the output data for a
single data package from a scope.

For target or file scopes, this
parameter has no effect.

No

Time Contains the time data for a single
data package from a scope.

For target or file scopes, this
parameter has no effect.

No

28-242

xpctarget.xpcsctg Class

Purpose Control and access properties of target scopes

Description The kernel acquires a data package and the scope displays the data on
the target computer screen. Depending on the setting of DisplayMode,
the data may be displayed numerically or graphically by a redrawing,
sliding, and rolling display.

Methods

These methods are inherited from xpctarget.xpcsc Class.

Method Description

xpctarget.xpcsc.addsignalAdd signals to scope represented by scope object

xpctarget.xpcsc.get
(scope object)

Return property values for scope objects

xpctarget.xpcsc.remsignalRemove signals from scope represented by scope object

xpctarget.xpcsc.set
(scope object)

Change property values for scope objects

xpctarget.xpcsc.start
(scope object)

Start execution of scope on target computer

xpctarget.xpcsc.stop
(scope object)

Stop execution of scope on target computer

xpctarget.xpcsc.triggerSoftware-trigger start of data acquisition for scope(s)

Properties

These properties are inherited from xpctarget.xpcsc Class.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

28-243

xpctarget.xpcsctg Class

Property Description Writable

NumPrePostSamples For host or target scopes, this parameter is the
number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

28-244

xpctarget.xpcsctg Class

Property Description Writable

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

28-245

xpctarget.xpcsctg Class

Property Description Writable

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Yes

These properties are specific to class xpcsctg.

Property Description Writeable

DisplayMode For target scopes, indicate how a
scope displays the signals. Values
are 'Numerical', 'Redraw'
(default), 'Sliding', and
'Rolling'.

For host or file scopes, this
parameter has no effect.
.

Yes

Grid Values are 'on' and 'off'.

For host or file scopes, this
parameter has no effect.

Yes

28-246

xpctarget.xpcsctg Class

Property Description Writeable

Mode

Note The Mode property will be
removed in a future release.

• For target scopes, use
DisplayMode.

• For file scopes, use WriteMode.

• For host scopes, this parameter
has no effect.

Yes

YLimit Minimum and maximum y-axis
values. This property can be set to
'auto'.

For host or file scopes, this
parameter has no effect.

Yes

28-247

xpctargetping

Purpose Test communication between host and target computers

Syntax MATLAB command line

xpctargetping
xpctargetping('mode', 'arg1', 'arg2')

Arguments mode Optionally, enter the communication mode:

Note RS-232 Host-Target communication
mode will be removed in a future release. Use
TCP/IP instead.

TCPIP Enable TCP/IP connection with
target computer.

RS232 Enable RS-232 connection with
target computer.

arg1 Optionally, enter an argument based on the
mode value:

IP
address

If mode is 'TCPIP', enter the IP
address of the target computer.

COM
port

If mode is 'RS232', enter the host
COM port.

arg2 Optionally, enter an argument based on the
mode value:

Port If mode is 'TCPIP', enter the port
number for the target computer.

Baud
rate

If mode is 'RS232', enter the baud
rate for the connection between the
host and target computer.

28-248

xpctargetping

Description Pings the target computer from the host computer and returns either
success or failed. If you have one target computer, or if you designate
a target computer as the default one in your system, use the syntax

xpctargetping

If you have multiple target computers in your system, use the following
syntax to identify the target computer to ping.

xpctargetping('mode', 'arg1', 'arg2')

This function returns success if the xPC Target kernel is loaded and
running and communication is working between host and target.

This function works with both RS-232 and TCP/IP communication.

ans =
success

Examples Check for communication between the host computer and target
computer.

xpctargetping

If you have a serial connection with the target computer you want to
check, use the following syntax.

xpctargetping('RS232', 'COM1', '115200')

How To • “Run Confidence Test on Configuration”

28-249

xpctargetspy

Purpose Open Real-Time xPC Target Spy window on host computer

Syntax MATLAB command line

xpctargetspy
xpctargetspy(target_object)
xpctargetspy('target_object_name')

Arguments target_object Variable name to reference the target object.

target_object_name Target object name as specified in the xPC
Target Explorer.

Description This graphical user interface (GUI) allows you to upload displayed data
from the target computer. By default, xpctargetspy opens a Real-Time
xPC Target Spy window for the target object, tg. If you have multiple
target computers in your system, you can call the xpctargetspy
function for a particular target object, target_object.

If you have one target computer, or if you designate a target computer
as the default one in your system, use the syntax

xpctargetspy

If you have multiple target computers in your system, use
xpctarget.xpc to create the additional target object first.

target_object=xpctarget.xpc('mode', 'arg1', 'arg2')

Then, use the following syntax.

xpctargetspy(target_object)

If you have a target computer object in the xPC Target Explorer, you
can use the following syntax.

target_object=xpctarget.xpc('target_object_name')

28-250

xpctargetspy

The behavior of this function depends on the value for the environment
property TargetScope:

• If TargetScope is enabled, a single graphics screen is uploaded. The
screen is not continually updated because of a higher data volume
when a target graphics card is in VGA mode. You must explicitly
request an update. To manually update the host screen with another
target screen, move the pointer into the Real-Time xPC Target Spy
window and right-click to select Update xPC Target Spy.

• If TargetScope is disabled, text output is transferred once every
second to the host and displayed in the window.

Examples To open the Real-Time xPC Target Spy window for a default target
computer, tg, in the MATLAB window, type

xpctargetspy

To open the Real-Time xPC Target Spy window for a target computer,
tg1, in the MATLAB window, type

xpctargetspy(tg1)

If you have multiple target computers in your system, use
xpctarget.xpc to create the additional target object, tg2, first.

tg2=xpctarget.xpc('RS232', 'COM1', '115200')

Then, use the following syntax.

xpctargetspy(tg2)

28-251

xpctest

Purpose Test xPC Target installation

Syntax MATLAB command line

xpctest
xpctest('target_name')
xpctest('-noreboot')
xpctest('noreboot')
xpctest('target_name', 'noreboot')
xpctest('target_name', '-noreboot')

Arguments 'target_name' Name of target computer to test.

'noreboot' Only one possible option. Skips the reboot test.
Use this option if the target hardware does not
support software rebooting. Value is 'noreboot'
or '-noreboot'.

Description xpctest is a series of xPC Target tests to check the functioning of the
following xPC Target tasks:

• Initiate communication between the host and target computers.

• Reboot the target computer to reset the target environment.

• Build a target application on the host computer.

• Download a target application to the target computer.

• Check communication between the host and target computers using
commands.

• Execute a target application.

• Compare the results of a simulation and the target application run.

xpctest('noreboot') or xpctest('-noreboot') skips the reboot test
on the default target computer. Use this option if target hardware does
not support software rebooting.

28-252

xpctest

xpctest('target_name') runs the tests on the target computer
identified by 'target_name'.

xpctest('target_name', 'reboot') or xpctest('target_name',
'-reboot') runs the tests on the target computer identified by
'target_name', but skips the reboot test.

Examples If the target hardware does not support software rebooting, or to skip
the reboot test, in the MATLAB window, type

xpctest('-noreboot')

To run xpctest on a specified target computer, for example TargetPC1,
type

xpctest('TargetPC1')

How To • “Run Confidence Test on Configuration”

• “Test 1: Ping Using System Ping” on page 13-2

28-253

xpcwwwenable

Purpose Disconnect target computer from current client application

Syntax MATLAB command line

xpcwwwenable
xpcwwwenable('target_obj_name')

Description Use this function to disconnect the target application from the MATLAB
interface before you connect to the Web browser. You can also use this
function to connect to the MATLAB interface after using a Web browser,
or to switch to another Web browser.

xpcwwwenable('target_obj_name') disconnects the target application
on target_obj_name, for example 'TargetPC1', from the MATLAB
interface.

28-254

29

Configuration Parameters

This topic deals with configuration parameters in xPC Target Explorer and
in the MATLAB API.

29 Configuration Parameters

Setting Configuration Parameters

In this section...

“xPC Target options Pane” on page 29-3

“Automatically download application after building” on page 29-4

“Download to default target PC” on page 29-5

“Specify target PC name” on page 29-6

“Name of xPC Target object created by build process” on page 29-7

“Use default communication timeout” on page 29-8

“Specify the communication timeout in seconds” on page 29-9

“Execution mode” on page 29-10

“Real-time interrupt source” on page 29-11

“I/O board generating the interrupt” on page 29-12

“PCI slot (-1: autosearch) or ISA base address” on page 29-16

“Log Task Execution Time” on page 29-17

“Signal logging data buffer size in doubles” on page 29-18

“Enable profiling” on page 29-20

“Number of events (each uses 20 bytes)” on page 29-21

“Double buffer parameter changes” on page 29-22

“Load a parameter set from a file on the designated target file system” on
page 29-24

“File name” on page 29-25

“Build COM objects from tagged signals/parameters” on page 29-26

“Generate CANape extensions” on page 29-27

“Include model hierarchy on the target application” on page 29-28

“Enable Stateflow animation” on page 29-29

29-2

Setting Configuration Parameters

xPC Target options Pane
Set up general information about building target applications, including
target, execution, data logging, and other options.

Configuration
To enable the xPC Target options pane, you must:

1 Select xpctarget.tlc or xpctargetert.tlc for the System target file
parameter on the code generation pane.

2 Select C for the Language parameter on the code generation pane.

Tips

• The default xPC Target options work for the generation of most target
applications. If you want to customize the build of your target application,
set the option parameters to suit your specifications.

• To access these parameters from the MATLAB command line, use:

- gcs — To access the current model.

- set_param — To set the parameter value.

- get_param— To get the current value of the parameter.

See Also
“xPC Target Options Configuration Parameter” on page 4-4

29-3

29 Configuration Parameters

Automatically download application after building
Enable Simulink Coder to build and download the target application to the
target computer.

Settings
Default: on

On
Builds and downloads the target application to the target computer.

Off
Builds the target application, but does not download it to the target
computer.

Command-Line Information

Parameter: xPCisDownloadable
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
“Build and Download Target Application”

29-4

Setting Configuration Parameters

Download to default target PC
Direct Simulink Coder to download the target application to the default
target computer.

Settings
Default: on

On
Downloads the target application to the default target computer.
Assumes that you configured a default target computer through xPC
Target Explorer.

Off
Enables the Specify target PC name field so that you can enter the
target computer to which to download the target application.

Dependency
This parameter enables Specify target PC name.

Command-Line Information

Parameter: xPCisDefaultEnv
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

• “Network Communication Setup”

• “Serial Communication Setup”

29-5

29 Configuration Parameters

Specify target PC name
Specify a target computer name for your target application.

Settings
''

Tip
The target computer name appears in xPC Target Explorer as the target
computer node, for example TargetPC1.

Dependencies
This parameter is enabled by Download to default target PC.

Command-Line Information

Parameter: xPCTargetPCEnvName
Type: string
Value: Any valid target computer
Default: ''

See Also
“xPC Target Explorer” on page 4-5

29-6

Setting Configuration Parameters

Name of xPC Target object created by build process
Enter the name of the target object created by the build process.

Settings
Default: tg

Tip
Use this name when you work with the target object through the
command-line interface.

Command-Line Information

Parameter: RL32ObjectName
Type: string
Value: 'tg' | valid target object name
Default: 'tg'

See Also
“Target Driver Objects” on page 7-2

29-7

29 Configuration Parameters

Use default communication timeout
Direct xPC Target software to wait 5 (default) seconds for the target
application to be downloaded to the target computer.

Settings
Default: on

On
Waits the default amount of seconds (5) for the target application to be
downloaded to the target computer.

Off
Enables the Specify the communication timeout in seconds field
so that you can enter the maximum length of time in seconds you want
to wait for a target application to be downloaded to the target computer.

Dependencies
This parameter enables Specify the communication timeout in seconds.

Command-Line Information

Parameter: xPCisModelTimeout
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
“Increase the Time for Downloads” on page 20-4

29-8

Setting Configuration Parameters

Specify the communication timeout in seconds
Specify a timeout, in seconds, to wait for the target application to download to
the target computer.

Settings
Default: 5

Tip
Enter the maximum length of time in seconds you want to allow the xPC
Target software to wait for the target application to download to the target
computer. If the target application is not downloaded within this time frame,
the software generates an error.

Dependencies
This parameter is enabled by Use default communication timeout.

Command-Line Information

Parameter: xPCModelTimeoutSecs
Type: string
Value: Any valid number of seconds
Default: '5'

See Also
“Increase the Time for Downloads” on page 20-4

29-9

29 Configuration Parameters

Execution mode
Specify target application execution mode.

Settings
Default: Real-Time

Real-Time
Executes target application in real time.

Freerun
Runs the target application as fast as possible.

Command-Line Information

Parameter: RL32ModeModifier
Type: string
Value: 'Real-Time' | 'Freerun'
Default: 'Real-Time'

See Also
“Set Configuration Parameters”

29-10

Setting Configuration Parameters

Real-time interrupt source
Select a real-time interrupt source from the I/O board.

Settings
Default: Timer

Timer
Specifies that the board interrupt source is a timer.

Auto (PCI only)
Enables the xPC Target software to automatically determine the IRQ
that the BIOS assigned to the board and use it.

3 to 15
Specifies that the board interrupt source is an IRQ number on the board.

Tips

• The Auto (PCI only) option is available only for PCI boards. If you
have an ISA board (PC 104 or onboard parallel port), you must set the
IRQ manually.

• The xPC Target software treats PCI parallel port plug-in boards like
ISA boards. For PCI parallel port plug-in boards, you must set the IRQ
manually.

• Multiple boards can share the same interrupt number.

Command-Line Information

Parameter: RL32IRQSourceModifier
Type: string
Value: 'Timer' | Auto (PCI only) | '3'|'4'|'5' | '6'|'7' |'8' |'9'
|'10' |'11' |'12' |'13' |'14' |'15'
Default: 'Timer'

See Also
“Set Configuration Parameters”

29-11

29 Configuration Parameters

I/O board generating the interrupt
Specify the board interrupt source.

Settings
Default: None/Other

ATI-RP-R5
Specifies that the interrupt source is an ATI-RP-R5 board.

AudioPMC+
Specifies that the interrupt source is the Bittware AudioPMC+ audio
board.

Bitflow NEON
Specifies that the interrupt source is the Bitflow NEON video board.

CB_CIO-CTR05
Specifies that the interrupt source is the Measurement Computing
CIO-CTR05 board.

CB_PCI-CTR05
Specifies that the interrupt source is the Measurement Computing
PCI-CTR05 board.

Diamond_MM-32
Specifies that the interrupt source is the Diamond Systems MM-32
board.

FastComm 422/2-PCI
Specifies that the interrupt source is the FastComm 422/2-PCI board.

FastComm 422/2-PCI-335
Specifies that the interrupt source is the FastComm 422/2-PCI-335
board.

FastComm 422/4-PCI-335
Specifies that the interrupt source is the FastComm 422/4-PCI-335
board.

GE_Fanuc(VMIC)_PCI-5565
Specifies that the interrupt source is the GE Fanuc VMIC PCI-5565
board.

29-12

Setting Configuration Parameters

General Standards 24DSI12
Specifies that the interrupt source is the General Standards 24DSI12
board.

Parallel_Port
Specifies that the interrupt source is the parallel port of the target
computer.

Quatech DSCP-200/300
Specifies that the interrupt source is the Quatech DSCP-200/300 board.

Quatech ESC-100
Specifies that the interrupt source is the Quatech ESC-100 board.

Quatech QSC-100
Specifies that the interrupt source is the Quatech QSC-100 board.

Quatech QSC-200/300
Specifies that the interrupt source is the Quatech QSC-200/300 board.

RTD_DM6804
Specifies that the interrupt source is the Real-Time Devices DM6804
board.

SBS_25x0_ID_0x100
Specifies that the interrupt source is an SBS Technologies shared
memory board associated with ID 0x100.

SBS_25x0_ID_0x101
Specifies that the interrupt source is an SBS Technologies shared
memory board associated with ID 0x101.

SBS_25x0_ID_0x102
Specifies that the interrupt source is an SBS Technologies shared
memory board associated with ID 0x102.

SBS_25x0_ID_0x103
Specifies that the interrupt source is an SBS Technologies shared
memory board associated with ID 0x103.

Scramnet_SC150+
Specifies that the interrupt source is the Systran Scramnet+ SC150
board.

Softing_CAN-AC2-104
Specifies that the interrupt source is the Softing CAN-AC2-104 board.

29-13

29 Configuration Parameters

Softing_CAN-AC2-PCI
Specifies that the interrupt source is the Softing CAN-AC2-PCI board.

Speedgoat_IO301
Specifies that the interrupt source is the Speedgoat IO301 FPGA board.

Speedgoat_IO302
Specifies that the interrupt source is the Speedgoat IO302 FPGA board.

Speedgoat_IO303
Specifies that the interrupt source is the Speedgoat IO303 FPGA board.

Speedgoat_IO311
Specifies that the interrupt source is the Speedgoat IO311 FPGA board.

Speedgoat_IO312
Specifies that the interrupt source is the Speedgoat IO312 FPGA board.

Speedgoat_IO313
Specifies that the interrupt source is the Speedgoat IO313 FPGA board.

Speedgoat_IO314
Specifies that the interrupt source is the Speedgoat IO314 FPGA board.

Speedgoat_IO325
Specifies that the interrupt source is the Speedgoat IO325 FPGA board.

UEI_MFx
Specifies that the interrupt source is a United Electronic Industries
UEI-MF series board.

None/Other
Specifies that the I/O board has no interrupt source.

Command-Line Information

Parameter: xPCIRQSourceBoard
Type: string
Value: 'ATI-RP-R5' |
'AudioPMC+' |
'Bitflow NEON' |
'CB_CIO-CTR05' |
'CB_PCI-CTR05' |
'Diamond_MM-32' |
'FastComm 422/2-PCI' |

29-14

Setting Configuration Parameters

'FastComm 422/2-PCI-335' |
'FastComm 422/4-PCI-335' |
'GE_Fanuc(VMIC)_PCI-5565' |
'General Standards 24DSI12' |
'Parallel_Port' |
'Quatech DSCP-200/300' |
'Quatech ESC-100' |
'Quatech QSC-100' |
'Quatech QSC-200/300' |
'RTD_DM6804' |
'SBS_25x0_ID_0x100' |
'SBS_25x0_ID_0x101' |
'SBS_25x0_ID_0x102' |
'SBS_25x0_ID_0x103' |
'Scramnet_SC150+' |
'Softing_CAN-AC2-104' |
'Softing_CAN-AC2-PCI' |
'Speedgoat_IO301' |
'Speedgoat_IO302' |
'Speedgoat_IO303' |
'Speedgoat_IO311' |
'Speedgoat_IO312' |
'Speedgoat_IO313' |
'Speedgoat_IO314' |
'Speedgoat_IO325' |
'UEI_MFx' |
'None/Other'
Default: 'None/Other'

See Also
“Set Configuration Parameters”

29-15

29 Configuration Parameters

PCI slot (-1: autosearch) or ISA base address
Enter the slot number or base address for the I/O board generating the
interrupt.

Settings
Default: -1

The PCI slot can be either -1 (let the xPC Target software determine the slot
number) or of the form [bus, slot].

The base address is a hexadecimal number of the form 0x300.

Tip
To determine the bus and PCI slot number of the boards in the target
computer, type getxpcpci in the MATLAB window.

Command-Line Information

Parameter: xPCIOIRQSlot
Type: string
Value: '-1' | hexadecimal value
Default: '-1'

See Also
“xPC Target Options Configuration Parameter” on page 4-4

“PCI Bus I/O Devices”

29-16

Setting Configuration Parameters

Log Task Execution Time
Log task execution times to the target object property tg.TETlog.

Settings
Default: on

On
Logs task execution times to the target object property tg.TETlog.

Off
Does not log task execution times to the target object property
tg.TETlog.

Command-Line Information

Parameter: RL32LogTETModifier
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
“xPC Target Options Configuration Parameter” on page 4-4

“Signal Logging Basics” on page 5-82

29-17

29 Configuration Parameters

Signal logging data buffer size in doubles
Enter the maximum number of sample points to save before wrapping.

Settings
Default: 100000

The maximum value for this option can be no more than the available target
computer memory, which the xPC Target software also uses to hold other
items.

Tips

• Target applications use this buffer to store the time, states, outputs, and
task execution time logs as defined in the Simulink model.

• The maximum value for this option derives from available target computer
memory, which the xPC Target software also uses to hold other items. For
example, in addition to signal logging data, the software also uses the target
computer memory for the xPC Target kernel, target application, and scopes.

For example, assume the model my_xpc_osc2 has six data items (one time,
two states, two outputs, and one task execution time (TET)). If you enter
a buffer size of 100000, the target object property tg.MaxLogSamples is
calculated as floor(100000) / 6) = 16666. After saving 16666 sample
points, the buffer wraps and further samples overwrite the older ones.

• If you enter a logging buffer size larger than the available RAM on the
target computer, after downloading and initializing the target application,
the target computer displays a message, ERROR: allocation of logging
memory failed. In this case you need to install more RAM or reduce the
buffer size for logging. In any case you must reboot the target computer.
To calculate the maximum buffer size you might have for you target
application logs, divide the amount of available RAM on your target
computer by 8. Enter that value for the Signal logging data buffer size
in doubles value.

Command-Line Information

Parameter: RL32LogBufSizeModifier
Type: string

29-18

Setting Configuration Parameters

Value: '100000' | any valid memory size
Default: '100000'

See Also
“xPC Target Options Configuration Parameter” on page 4-4

29-19

29 Configuration Parameters

Enable profiling
Enable profiling and visual presentation of target computer execution.

Settings
Default: off

On
Profile target computer execution.

Off
Do not profile target computer execution.

Tips

• Before building and downloading a model, select this check box to observe
the target computer thread execution.

• If you are using multiple CPU cores on a target computer, select Enabling
profiling to verify that the xPC Target software is actually executing on
the multiple CPU cores.

Tip For more on configuring your model for concurrent execution, see
“Design Considerations”.

Command-Line Information

Parameter: xPCTaskExecutionProfile
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Profiling Target Application Execution” on page 26-6

29-20

Setting Configuration Parameters

Number of events (each uses 20 bytes)
Enter the maximum of events to log for the profiling tool.

Settings
Default: 5000

The maximum number of events to be logged for the profiling tool.

Tips

• An event is the start of end of an interrupt or iteration of the model.
For example, one sample can four events: the beginning and end of an
interrupt, and the beginning and end of an iteration.

• Use this parameter in conjunction with the Enable profiling parameter.

• Each event contains information such as the CPU ID, model thread ID
(TID), event ID, and time stamp readings. Each event occupies 20 bytes.

Command-Line Information

Parameter: xPCRL32EventNumber
Type: string
Value: any valid number of events
Default: '5000'

See Also
“Profiling Target Application Execution” on page 26-6

29-21

29 Configuration Parameters

Double buffer parameter changes
Use a double buffer for parameter tuning. This enables parameter tuning
so that the process of changing parameters in the target application uses
a double buffer.

Settings
Default: off

On
Changes parameter tuning to use a double buffer.

Off
Suppresses double buffering of parameter changes in the target
application.

Tips

• When a parameter change request is received, the new value is compared
to the old one. If the new value is identical to the old one, it is discarded,
and if different, queued.

• At the start of execution of the next sample of the real-time task, all queued
parameters are updated. This means that parameter tuning affects the
task execution time (TET), and the very act of parameter tuning can cause
a CPU overload error.

• Double buffering leads to a more robust parameter tuning interface, but
it increases Task Execution Time (TET) and the higher probability of
overloads. Under typical conditions, keep double buffering off (default).

Command-Line Information

Parameter: xpcDblBuff
Type: string
Value: 'on' | 'off'
Default: 'off'

29-22

Setting Configuration Parameters

See Also
“xPC Target Options Configuration Parameter” on page 4-4

29-23

29 Configuration Parameters

Load a parameter set from a file on the designated
target file system
Automatically load a parameter set from a file on the designated target
computer file system.

Settings
Default: off

On
Enable the automatic loading of a parameter set from the file specified
by File name on the designated target computer file system.

Off
Suppress the automatic loading of a parameter set from a file on the
designated target computer file system.

Dependencies
This parameter enables File name.

Command-Line Information

Parameter: xPCLoadParamSetFile
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“xPC Target Options Configuration Parameter” on page 4-4

“Save and Reload Parameters with MATLAB Language” on page 5-135

29-24

Setting Configuration Parameters

File name
Specify the target computer file name from which to load the parameter set.

Settings
''

Tip
If the named file does not exist, the software loads the parameter set built
with the model.

Dependencies
This parameter is enabled by Load a parameter set from a file on the
designated target file system.

Command-Line Information

Parameter: xPCOnTgtParamSetFileName
Type: string
Value: Any valid file name
Default: ''

See Also
“xPC Target Options Configuration Parameter” on page 4-4

29-25

29 Configuration Parameters

Build COM objects from tagged signals/parameters
Enable build process to create a model-specific COM library file.

Settings
Default: off

On
Creates a model-specific COM library file, <model_name>COMiface.dll.

Off
Does not create a model-specific COM library file.

Tip
Use the model-specific COM library file to create custom GUIs with Visual
Basic® or other tools that can use COM objects.

Command-Line Information

Parameter: xpcObjCom
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Creating the Target Application and Model-Specific COM Library”

29-26

Setting Configuration Parameters

Generate CANape extensions
Enable target applications to generate data, such as that for A2L, for Vector
CANape.

Settings
Default: off

On
Enables target applications to generate data, such as that for A2L, for
Vector CANape.

Off
Does not enable target applications to generate data, such as that for
A2L, for Vector CANape.

Command-Line Information

Parameter: xPCGenerateASAP2
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Configuring the Vector CANape Device” on page 2-6

29-27

29 Configuration Parameters

Include model hierarchy on the target application
Includes the Simulink model hierarchy as part of the target application.

Settings
Default: off

On
Includes the model hierarchy as part of the target application.

Off
Excludes the model hierarchy from the target application.

Tips
Including the model hierarchy in the target application:

• Lets you connect to the target computer from xPC Target Explorer without
being in the target application build directory.

• Can increase the size of the target application, depending on the size of
the model.

Command-Line Information

Parameter: xPCGenerateXML
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Monitor Signals with xPC Target Explorer” on page 5-5

29-28

Setting Configuration Parameters

Enable Stateflow animation
Enables visualization of Stateflow chart animation.

Settings
Default: off

On
Enables visualization of Stateflow chart animation.

Off
Disables visualization of Stateflow chart animation.

Command-Line Information

Parameter: xPCEnableSFAnimation
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Animate Stateflow Charts with Simulink External Mode” on page 5-18

29-29

29 Configuration Parameters

29-30

Index

IndexA
application parameters

saving and reloading 5-135

B
block parameters

file scope 5-83
host scope 5-29
parameter tuning with external mode 5-132
target scope 5-21

boot options
boot drive 4-41 4-77
CD 4-37 4-73

booting
troubleshooting 17-4 to 17-5

build process
troubleshooting 20-2

C
CD

creating for booting 4-37 4-73
CD target boot disk

creating 4-37 4-73
changing environment properties

CLI 4-9 4-43
changing parameters

using target object properties 5-128
xPC Target commands 5-128

code generation options
reference 4-4

command-line interface
scope object 7-8
target objects 7-2
target PC 10-1

configuration parameters
pane 29-3

Automatically download application
after building 29-4

Build COM objects from tagged
signals/parameters 29-26

Double buffer parameter changes 29-22
Download to default target PC 29-5
Enable Stateflow Animation 29-29
Execution mode 29-10
File name 29-25
Generate CANape extensions 29-27
I/O board generating the interrupt 29-12
Include model hierarchy on the target

application 29-28
Load a parameter set from a file on the

designated target file system 29-24
Log Task Execution Time 29-17
Name of xPC Target object created by

build process 29-7
PCI slot/ISA base address 29-16
Real-time interrupt source 29-11
Signal logging data buffer size in

doubles 29-18
Specify target PC name 29-6
Specify the communication timeout in

seconds 29-9
Use default communication timeout 29-8

CPU overloads
troubleshooting 24-4

creating CD target boot disks 4-37 4-73
creating removable boot drives 4-41 4-77

D
data logging

with MATLAB 5-107
with Web browser 5-117

default target computer
introduction 4-6

defining file scope block parameters 5-83
defining host scope block parameters 5-29
defining target scope block parameters 5-21
DOSLoader mode

Index-1

Index

using xpcbootdisk 4-39 4-75

E
environment

network communication 4-16 4-22 4-27 4-48
4-54 4-60

serial communication 4-34 4-68
environment properties

changing through CLI 4-9 4-43
updating through CLI 4-9 4-43

Ethernet adapter
USB bus 4-19 4-51

Ethernet card
ISA bus 4-24 4-57
PCI bus 4-13 4-45

exporting and importing
xPC Target Explorer 4-7

external mode
parameter tuning 5-132

F
file scope blocks

parameters 5-83
file scopes

virtual 5-89
file system objects

methods 27-10
xpctarget.fs introduction 8-4

file systems
introduction 8-2
target computer 8-2

files
data acquisition 5-83
scopes 5-83

floppy disk
creating for booting 4-41 4-77

Fortran
S- function wrapper 3-8

wrapper S-function 3-8
xPC Target 3-2

FTP objects
xpctarget.ftp introduction 8-4

functions
changing parameters 5-128
signal logging 5-107
signal monitoring 5-9

G
getting parameter properties 5-128
getting signal properties 5-9

H
host computer

hardware 4-33 4-67
host scope blocks

parameters 5-29
host scope viewer

xPC Target Explorer 5-68
host scopes

virtual 5-62

I
inlined parameters

tuning with MATLAB 5-146
tuning with xPC Target Explorer 5-141

installing
Ethernet adapter for USB 4-19 4-51
Ethernet card for ISA 4-24 4-57
Ethernet card for PCI 4-13 4-45
hardware 4-33 4-67

interrupt mode
introduction 6-1

ISA bus
Ethernet card 4-24 4-57

Index-2

Index

M
MathWorks

technical support 25-5
MATLAB

parameter tuning 5-128
signal logging 5-107
signal monitoring 5-9

methods
file system object 27-10

monitoring signals
referenced models 5-4
xPC Target Explorer 5-5

monitoring Stateflow states
MATLAB interface 5-11

N
network communication

environment 4-16 4-22 4-27 4-48 4-54 4-60
host computer 4-14 4-20 4-25 4-46 4-52 4-58
ISA bus 4-27 4-60
ISA hardware 4-25 4-58
PCI bus 4-16 4-48
PCI hardware 4-14 4-46
target computer 4-14 4-20 4-25 4-46 4-52

4-58
USB bus 4-22 4-54
USB hardware 4-20 4-52

P
parameter tuning 5-132

overview 5-118
Web browser 5-134
with MATLAB 5-128
with Simulink external mode 5-132

parameters
changing with commands 5-128
file scope blocks 5-83
host scope blocks 5-29

inlining 5-138
target scope blocks 5-21
tuning with external mode 5-132
tuning with MATLAB 5-128
tuning with Web browser 5-134

PCI bus
Ethernet card 4-13 4-45
network communication 4-16 4-22 4-27 4-48

4-54 4-60
polling mode

introduction 6-1
setting up 6-7

properties
changing environment 4-9 4-43
multiple target computer system 4-43
single target computer system 4-9
updating environment 4-9 4-43

R
readxpcfile 8-14
referenced models

monitoring signals 5-4
removable boot drive

creating 4-41 4-77

S
S-Function

xPC Target 3-2
saving and reloading application parameters

with MATLAB 5-135
scope objects

command-line interface 7-8
commands 7-8
list of properties with files 5-113
list of properties with targets 5-72
methods, see commands 7-8
properties 7-8

scope triggering

Index-3

Index

freerun 5-44
interactive 5-44
noninteractive 5-48
scope 5-44 5-48
signal 5-48
software 5-44

scopes
file 5-83
host 5-29
scope triggering 5-44 5-48
target 5-21

serial communication
environment 4-34 4-68
hardware 4-33 4-67

setting
serial communication 4-34 4-68

signal logging
overview 5-82
with MATLAB 5-107
with Web browser 5-117
xPC Target Explorer 5-103

signal monitoring
with MATLAB 5-9

signal tracing
with Simulink external mode 5-75
with Web browser 5-80
with xPC Target file scope blocks 5-83
with xPC Target host scope blocks 5-29
with xPC Target target scope blocks 5-21

simulation parameters
xPC Target Scope block 5-21 5-29 5-83

Simulink Coder
code generation options 4-4

Simulink external mode
parameter tuning 5-132
signal tracing 5-75

Stateflow states
monitoring 5-11

T
target boot disk

creating 4-41 4-77
target computer

copying files with xpctarget.ftp 8-8
creating boot drive 4-41 4-77
creating CD boot disk 4-37 4-73
creating CD bootable ROM 4-37 4-73
disk information retrieval with

xpctarget.fs 8-18
file content retrieval with

xpctarget.fs 8-12
file conversion with xpctarget.fs 8-14
file information retrieval with

xpctarget.fs 8-17
file removal with xpctarget.fs 8-15
file retrieval with xpctarget.ftp 8-8
folder listings with xpctarget.ftp 8-7
hardware 4-33 4-67
list of open files with xpctarget.fs 8-16

target object properties
file scopes 5-112

target objects
changing parameters 5-128
command-line interface 7-2
commands 7-2
list of properties with files 5-112
methods, see commands 7-2
parameter properties 5-128
properties 7-2
signal properties 5-9

target PC
command-line interface 10-1
manipulating scope object properties 10-6
manipulating scope objects 10-4
manipulating target object properties 10-3
using target application methods 10-2

target scope blocks
parameters 5-21

target scopes

Index-4

Index

virtual 5-33
task execution time (TET)

average 28-148 28-162
definition 5-110
logging 28-153 28-167
maximum 28-150 28-163
minimum 28-150 28-163
with the getlog function 28-168

TET. See task execution time
timeout value

changing 20-4
tracing signals

xPC Target Explorer 5-33 5-62 5-89
troubleshooting

application execution 13-16
BIOS settings 15-2
boot disk 25-4
boot image 25-4
boot process 17-4 to 17-5
booting target 17-1
build 13-9
build process 20-2
changed stop time 21-6
communication 13-2 13-5 13-9 13-12 13-14
communication issues 16-2
compilation 13-9
confidence test 12-1 13-1
connection lost 16-4 16-6 16-8
CPU Overload 24-4
CPU overloads 24-4
custom device drivers 18-3
device drivers 18-3
different sample times 21-3
download 13-9 13-14 20-1
Error -10 23-2
execution 13-15 21-1
file system disabled 15-4
general I/O 15-7
getxpcpci 15-6
host configuration 14-1

host PC MATLAB halted 14-2
I/O driver errors 16-8
I/O drivers 18-1
installation, configuration, and tests 12-1
invalid file ID 23-2
lost connection 16-4 16-6 16-8
model compilation 19-1
multiple Ethernet cards 16-6
new releases 25-4
parameters 13-15 to 13-16 22-1
PCI board slot and bus 15-6
PCI boards 15-6
performance 24-1
sample time differences 21-3
sample times 21-3
signals 13-15 to 13-16 23-1
slow initialization time 16-4
stack size 15-5
standalone xPC Target application 19-2
stop time change 21-6
support 25-1
tagging virtual blocks 23-3
target application 13-15 to 13-16
target application build 19-1 20-1
target boot 13-7
target computer hardware 15-1
target configuration 13-2 13-5 13-7 13-9

13-12 13-14 to 13-16
target PC halted 17-6
target PC monitor view 21-2
test failures 13-1
timeout value 20-4
updated xPC Target releases 25-3
virtual block tagging 23-3
xPC Target PC unable to boot 17-2
xpctargetspy 21-2
xpctest 12-1 13-1

tuning parameters
xPC Target Explorer 5-119

Index-5

Index

U
updating environment properties through

CLI 4-9 4-43
USB bus

Ethernet adapter 4-19 4-51

W
Web browser 5-80

connecting 11-2
parameter tuning 5-134
signal logging 5-117

X
xPC Target

application download 20-1
application execution 21-1
application parameters 22-1
application performance 24-1
application signals 23-1
host-target communication 16-1
MathWorks support 25-1
modeling 18-1
procedure 12-1
target boot disk 17-1
troubleshooting 12-1 13-1 14-1 15-1 16-1

17-1 18-1 20-1 21-1 22-1 23-1 24-1 25-1

Web browser 11-1
xPC Target Explorer

configuring the host scope viewer 5-68
introduction 4-5
logging 5-103
monitoring signals 5-5
saving 4-7
tracing signals 5-33 5-62 5-89
tuning parameters 5-119

xPC Target file scope blocks 5-83
xPC Target host scope blocks 5-29
xPC Target target scope blocks 5-21
xpctarget.fs

creation 8-4
introduction 8-2
methods 27-10
overview 8-10

xpctarget.fsbase
methods 27-10

xpctarget.ftp
creation 8-4
introduction 8-2
methods 27-10
overview 8-5

xpctcp2ser 11-5

Index-6

	toc
	Model Architectures
	FPGA Models
	FPGA Support
	Supported FPGA I/O Boards
	Prerequisites

	Workflow
	Creating an FPGA Domain Model
	Generating HDL with the Workflow Advisor
	Creating an xPC Target Domain Model
	Adding the xPC Target Interface Subsystem to the xPC Target Doma
	Building and Downloading the Target Application
	Interrupts
	FPGA Domain Model
	xPC Target Domain Model

	FPGA-Based Applications

	Vector CANape Support
	Vector CANape
	Vector CANape Basics
	xPC Target and Vector CANape Limitations

	Configuring the Model for Vector CANape
	Setting Up and Building the Model
	Creating a New Vector CANape Project
	Configuring the Vector CANape Device
	Configuring the Location of the A2L (ASAP2) File

	Providing A2L (ASAP2) Files for Vector CANape

	Event Mode Data Acquisition
	Guidelines
	Limitations

	Incorporating Fortran S-Functions
	Fortran S-Functions
	Prerequisites
	Simulink Demos Folder
	Steps to Incorporate Fortran

	Fortran Atmosphere Model
	Creating a Fortran Atmosphere Model
	Compiling Fortran Files
	Creating a C-MEX Wrapper S-Function
	Compiling and Linking the Wrapper S-Function
	Validating the Fortran Code and Wrapper S-Function
	Preparing the Model for the xPC Target Application Build
	Building and Running the xPC Target Application

	Target Application Environment
	xPC Target Options Configuration Parameter
	xPC Target Explorer
	Basic Operations
	Default Target Computers
	Saving Environment Properties

	Command Line Setup for Single Target Computer Systems
	Command Line C Compiler Configuration
	Command Line Network Communication Setup
	Command Line PCI Bus Ethernet Setup
	PCI Bus Ethernet Hardware
	Command Line PCI Bus Ethernet Settings
	Command Line USB-to-Ethernet Setup
	USB-to-Ethernet Hardware
	Command Line USB-to-Ethernet Settings
	Command Line ISA Bus Ethernet Setup
	ISA Bus Ethernet Hardware
	Command Line ISA Bus Ethernet Settings
	Ethernet Card Selection by EthernetIndex
	Command Line Serial Communication Setup
	RS-232 Hardware
	Command Line RS-232 Settings
	Command Line Target Boot Methods
	Command Line CD Boot Method
	Command Line DOS Loader Boot Method
	Command Line Removable Disk Boot Method
	Command Line Setup for Multiple Target Computer Systems
	Command Line Network Communication Setup: Multiple Target Comput
	Command Line PCI Bus Ethernet Setup: Multiple Target Computers
	PCI Bus Ethernet Hardware
	Command Line PCI Bus Ethernet Settings: Multiple Target Computer
	Command Line USB-to-Ethernet Setup: Multiple Target Computers
	USB-to-Ethernet Hardware
	Command Line USB-to-Ethernet Settings: Multiple Target Computers
	Command Line ISA Bus Ethernet Setup: Multiple Target Computers
	ISA Bus Ethernet Hardware
	Command Line ISA Bus Ethernet Settings: Multiple Target Computer
	Ethernet Card Selection by EthernetIndex: Multiple Target Comput
	Command Line Serial Communication Setup: Multiple Target Compute
	RS-232 Hardware
	Command Line RS-232 Settings: Multiple Target Computers
	Command Line Target Boot Methods: Multiple Target Computers
	Command Line Network Boot Method: Multiple Target Computers
	Command Line CD Boot Method: Multiple Target Computers
	Command Line DOS Loader Boot Method: Multiple Target Computers
	Command Line Removable Disk Boot Method: Multiple Target Compute

	Signals and Parameters
	Signal Monitoring Basics
	Monitor Signals with xPC Target Explorer
	Monitor Signals with MATLAB Language
	Configure for Monitoring Stateflow States
	Monitor Stateflow States with xPC Target Explorer
	Monitor Stateflow States with MATLAB Language
	Animate Stateflow Charts with Simulink External Mode
	Signal Tracing Basics
	Trace Signals with Target Scope (xPC) Blocks
	xPC Target Scope Usage
	Target Scope Usage
	Trace Signals with Host Scope (xPC) Blocks
	Host Scope Usage
	Trace Signals with Target Scopes Using xPC Target Explorer
	Configure Scope Sampling Using xPC Target Explorer
	Configure Interactive Scope Triggering Using xPC Target Explorer
	Configure Noninteractive Scope Triggering Using xPC Target Explo
	Configure Target Scope Display Using xPC Target Explorer
	Create Signal Groups Using xPC Target Explorer
	Trace Signals with Host Scopes Using xPC Target Explorer
	Configure the Host Scope Viewer
	Configure Data Cursor Using xPC Target Explorer
	Trace Signals with Target Scopes Using MATLAB Language
	Trace Signals with Simulink External Mode
	External Mode Usage
	Trace Signals with a Web Browser
	Signal Logging Basics
	Log Signals with File Scope (xPC) Blocks
	File Scope Usage
	Log Signals with File Scopes Using xPC Target Explorer
	Configure File Scopes Using xPC Target Explorer
	Log Signal Data into Multiple Files
	Log Signals Using Outport with xPC Target Explorer
	Log Signals Using Outport with MATLAB Language
	Log Signals with File Scopes Using MATLAB Language
	Log Signals with a Web Browser
	Parameter Tuning Basics
	Tune Parameters with xPC Target Explorer
	Create Parameter Groups Using xPC Target Explorer
	Tune Parameters Using MATLAB Language
	Reset Target Application Parameters to Previous Values

	Tune Parameters with Simulink External Mode
	Tune Parameters with a Web Browser
	Save and Reload Parameters with MATLAB Language
	Save the Current Set of Target Application Parameters
	Load Saved Parameters to a Target Application
	List the Values of the Parameters Stored in a File

	Configure to Tune Inlined Parameters
	Tune Inlined Parameters with xPC Target Explorer
	Tune Inlined Parameters with MATLAB Language
	Nonobservable Signals and Parameters

	Execution Modes
	Execution Modes
	Interrupt Mode
	Latencies Introduced by Interrupt Mode

	Polling Mode
	Introducing Polling Mode
	Setting the Polling Mode
	Restrictions Introduced by Polling Mode
	Host-Target Communication Is Not Available During the Execution
	Target Screen Does Not Update During the Execution of the Target
	Session Time Does Not Advance During the Execution of the Target
	The Only Rapid-Prototyping Feature Available Is Data Logging
	Multirate Simulink Models Cannot Be Executed in Multitasking Mod
	I/O Drivers Using Kernel Timing Information Cannot Be Used Withi

	Controlling the Target Application
	Polling Mode Performance
	Polling Mode and Multicore Processors

	Execution Using MATLAB Scripts
	Targets and Scopes in the MATLAB Interface
	Target Driver Objects
	What Is a Target Object?
	Accessing Help for Target Objects
	Creating Target Objects
	Displaying Target Object Properties
	Setting Target Object Properties from the Host Computer
	Getting the Value of a Target Object Property
	Using the Method Syntax with Target Objects

	Target Scope Objects
	What Is a Scope Object?
	Accessing Help for Scope Objects
	Displaying Scope Object Properties for a Single Scope
	Displaying Scope Object Properties for All Scopes
	Setting the Value of a Scope Property
	Getting the Value of a Scope Property
	Using the Method Syntax with Scope Objects
	Acquiring Signal Data with File Scopes
	Acquiring Signal Data into Dynamically Named Files with File Sco
	Advanced Data Acquisition Topics
	Triggering One Scope with Another Scope to Acquire Data
	Acquiring Gap-Free Data Using Two Scopes

	Logging Signal Data with FTP and File System Objects
	File Systems
	FTP and File System Objects
	Using xpctarget.ftp Objects
	Overview
	Accessing Files on a Specific Target Computer
	Listing the Contents of the Target Computer Folder
	Retrieving a File from the Target Computer to the Host Computer
	Copying a File from the Host Computer to the Target Computer

	Using xpctarget.fs Objects
	Overview
	Accessing File Systems from a Specific Target Computer
	Retrieving the Contents of a File from the Target Computer to th
	Converting xPC Target File Format Content to Double Precision Da

	Removing a File from the Target Computer
	Getting a List of Open Files on the Target Computer
	Getting Information about a File on the Target Computer
	Getting Information about a Disk on the Target Computer

	Execution Using Graphical User Interface Models
	xPC Target Interface Blocks to Simulink Models
	Simulink User Interface Model
	Creating a Custom Graphical Interface
	To xPC Target Block
	From xPC Target Block
	Creating a Target Application Model
	Marking Block Parameters
	Marking Block Signals

	Execution Using the Target Computer Command Line
	Target Computer Command-Line Interface
	Using Target Application Methods on the Target Computer
	Manipulating Target Object Properties from the Target Computer
	Manipulating Scope Objects from the Target Computer
	Manipulating Scope Object Properties from the Target Computer
	Aliasing with Variable Commands on the Target Computer

	Execution Using the Web Browser Interface
	Web Browser Interface
	Introduction
	Connecting the Web Interface Through TCP/IP
	Connecting the Web Interface Through RS-232
	Syntax for the xpctcp2ser Command

	Using the Main Pane
	Changing WWW Properties
	Viewing Signals with a Web Browser
	Viewing Parameters with a Web Browser
	Changing Access Levels to the Web Browser

	Troubleshooting
	Basic Troubleshooting
	Troubleshooting Procedure

	Confidence Test Failures
	Test 1: Ping Using System Ping
	Test 2: Ping Using xpctargetping
	Test 3: Reboot Target Computer
	Test 4: Build and Download xpcosc
	Test 5: Check Host-Target Communications
	Test 6: Download Prebuilt Target Application
	Test 7: Execute Target Application
	Test 8: Upload Data and Compare

	Host Computer Configuration
	Why Does Boot Drive Creation Halt?

	Target Computer Configuration
	Faulty BIOS Settings on Target Computer
	Allowable Partitions on the Target Hard Drive
	File System Disabled on the Target Computer
	Adjust the Target Computer Stack Size
	How Can I Get PCI Board Information?
	How Do I Diagnose My Board Driver?

	Host-Target Communication
	Is There Communication Between the Computers?
	Boards with Slow Initialization
	Timeout with Multiple Ethernet Cards
	Recovery from Board Driver Errors
	How Can I Diagnose Network Problems?

	Target Computer Boot Process
	Why Won’t the Target Computer Boot?
	Why Won't the Kernel Load?
	Why Is the Target Medium Not Bootable?
	Why Is the Target Computer Halted?

	Modeling
	How Do I Handle Encoder Register Rollover?
	How Can I Write Custom Device Drivers?

	Model Compilation
	Requirements for Standalone Target Applications
	Compiler Errors from Models Linked to DLLs
	Compilation Failure with WATCOM Compilers

	Application Download
	Why Does My Download Time Out?
	Increase the Time for Downloads
	Why Does the Download Halt?

	Application Execution
	View Application Execution from the Host
	Sample Time Deviates from Expected Value
	What Measured Sample Time Can I Expect?
	Why Has the Stop Time Changed?
	Why Is the Web Interface Not Working?

	Application Parameters
	Why Does the getparamid Function Return Nothing?
	Can I Tune All the Model Parameters?

	Application Signals
	How Do I Fix Invalid File IDs?
	Can I Access All the Model Signals?

	Application Performance
	How Can I Improve Run-Time Performance?
	Why Does Model Execution Produce CPU Overloads?
	How Small Can the Sample Time Be?
	Can I Allow CPU Overloads?

	Getting MathWorks Support
	Where Is the MathWorks Support Web Site?
	How Do I Get a Software Update?
	What Should I Do After Updating Software?
	How Do I Contact MathWorks Technical Support?

	Tuning Performance
	Building Referenced Models in Parallel
	Multicore Processor Configuration
	Profiling Target Application Execution
	Profiling Overview
	Configuring Your Model to Collect Profile Data During Execution
	Displaying and Evaluating Profile Data
	Interpreting Profile Data
	Customizing profile_xpc_demo.m

	Function Reference
	Classes
	Target Computers
	Target Environments
	Target Applications
	Scopes
	Parameters
	Signals
	Data Logs
	File Systems

	Functions
	Configuration Parameters
	Setting Configuration Parameters
	xPC Target options Pane
	Configuration
	Tips
	See Also

	Automatically download application after building
	Settings
	Command-Line Information
	See Also

	Download to default target PC
	Settings
	Dependency
	Command-Line Information
	See Also

	Specify target PC name
	Settings
	Tip
	Dependencies
	Command-Line Information
	See Also

	Name of xPC Target object created by build process
	Settings
	Tip
	Command-Line Information
	See Also

	Use default communication timeout
	Settings
	Dependencies
	Command-Line Information
	See Also

	Specify the communication timeout in seconds
	Settings
	Tip
	Dependencies
	Command-Line Information
	See Also

	Execution mode
	Settings
	Command-Line Information
	See Also

	Real-time interrupt source
	Settings
	Tips
	Command-Line Information
	See Also

	I/O board generating the interrupt
	Settings
	Command-Line Information
	See Also

	PCI slot (-1: autosearch) or ISA base address
	Settings
	Tip
	Command-Line Information
	See Also

	Log Task Execution Time
	Settings
	Command-Line Information
	See Also

	Signal logging data buffer size in doubles
	Settings
	Tips
	Command-Line Information
	See Also

	Enable profiling
	Settings
	Tips
	Command-Line Information
	See Also

	Number of events (each uses 20 bytes)
	Settings
	Tips
	Command-Line Information
	See Also

	Double buffer parameter changes
	Settings
	Tips
	Command-Line Information
	See Also

	Load a parameter set from a file on the designated target file s
	Settings
	Dependencies
	Command-Line Information
	See Also

	File name
	Settings
	Tip
	Dependencies
	Command-Line Information
	See Also

	Build COM objects from tagged signals/parameters
	Settings
	Tip
	Command-Line Information
	See Also

	Generate CANape extensions
	Settings
	Command-Line Information
	See Also

	Include model hierarchy on the target application
	Settings
	Tips
	Command-Line Information
	See Also

	Enable Stateflow animation
	Settings
	Command-Line Information
	See Also

	Index

